TY - JOUR A1 - Deeleman-Reinhold, Christa L. A1 - Miller, Jeremy A1 - Floren, Andreas T1 - Depreissia decipiens, an enigmatic canopy spider from Borneo revisited (Araneae, Salticidae), with remarks on the distribution and diversity of canopy spiders in Sabah, Borneo JF - ZooKeys N2 - Depreissia is a little known genus comprising two hymenopteran-mimicking species, one found in Central Africa and one in the north of Borneo. The male of D. decipiens is redescribed, the female is described for the first time. The carapace is elongated, dorsally flattened and rhombus-shaped, the rear of the thorax laterally depressed and transformed, with a pair of deep pits; the pedicel is almost as long as the abdomen. The male palp is unusual, characterized by the transverse deeply split membranous tegulum separating a ventral part which bears a sclerotized tegular apophysis and a large dagger-like retrodirected median apophysis. The female epigyne consists of one pair of large adjacent spermathecae and very long copulatory ducts arising posteriorly and rising laterally alongside the spermathecae continuing in several vertical and horizontal coils over the anterior surface. Relationships within the Salticidae are discussed and an affinity with the Cocalodinae is suggested. Arguments are provided for a hypothesis that D. decipiens is not ant-mimicking as was previously believed, but is a mimic of polistinine wasps. The species was found in the canopy in the Kinabalu area only, in primary and old secondary rainforest at 200–700 m.a.s.l. Overlap of canopy-dwelling spider species with those in the understorey are discussed and examples of species richness and endemism in the canopy are highlighted. Canopy fogging is a very efficient method of collecting for most arthropods. The canopy fauna adds an extra dimension to the known biodiversity of the tropical rainforest. In southeast Asia, canopy research has been neglected, inhibiting evaluation of comparative results of this canopy project with that from other regions. More use of fogging as a collecting method would greatly improve insight into the actual species richness and species distribution in general. KW - depreissia decipiens KW - jumping spiders KW - canopy spiders KW - taxonomy KW - biodiversity KW - ant-mimicking spiders KW - wasp-mimicking KW - Mt. Kinabalu KW - rainforest KW - Cocalodinae KW - Polistine wasps KW - endemism Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-168342 VL - 556 ER - TY - JOUR A1 - Basset, Yves A1 - Cizek, Lukas A1 - Cuénoud, Philippe A1 - Didham, Raphael K. A1 - Novotny, Vojtech A1 - Ødegaard, Frode A1 - Roslin, Tomas A1 - Tishechkin, Alexey K. A1 - Schmidl, Jürgen A1 - Winchester, Neville N. A1 - Roubik, David W. A1 - Aberlenc, Henri-Pierre A1 - Bail, Johannes A1 - Barrios, Hector A1 - Bridle, Jonathan R. A1 - Castaño-Meneses, Gabriela A1 - Corbara, Bruno A1 - Curletti, Gianfranco A1 - da Rocha, Wesley Duarte A1 - De Bakker, Domir A1 - Delabie, Jacques H. C. A1 - Dejean, Alain A1 - Fagan, Laura L. A1 - Floren, Andreas A1 - Kitching, Roger L. A1 - Medianero, Enrique A1 - de Oliveira, Evandro Gama A1 - Orivel, Jerome A1 - Pollet, Marc A1 - Rapp, Mathieu A1 - Ribeiro, Servio P. A1 - Roisin, Yves A1 - Schmidt, Jesper B. A1 - Sørensen, Line A1 - Lewinsohn, Thomas M. A1 - Leponce, Maurice T1 - Arthropod Distribution in a Tropical Rainforest: Tackling a Four Dimensional Puzzle JF - PLoS ONE N2 - Quantifying the spatio-temporal distribution of arthropods in tropical rainforests represents a first step towards scrutinizing the global distribution of biodiversity on Earth. To date most studies have focused on narrow taxonomic groups or lack a design that allows partitioning of the components of diversity. Here, we consider an exceptionally large dataset (113,952 individuals representing 5,858 species), obtained from the San Lorenzo forest in Panama, where the phylogenetic breadth of arthropod taxa was surveyed using 14 protocols targeting the soil, litter, understory, lower and upper canopy habitats, replicated across seasons in 2003 and 2004. This dataset is used to explore the relative influence of horizontal, vertical and seasonal drivers of arthropod distribution in this forest. We considered arthropod abundance, observed and estimated species richness, additive decomposition of species richness, multiplicative partitioning of species diversity, variation in species composition, species turnover and guild structure as components of diversity. At the scale of our study (2km of distance, 40m in height and 400 days), the effects related to the vertical and seasonal dimensions were most important. Most adult arthropods were collected from the soil/litter or the upper canopy and species richness was highest in the canopy. We compared the distribution of arthropods and trees within our study system. Effects related to the seasonal dimension were stronger for arthropods than for trees. We conclude that: (1) models of beta diversity developed for tropical trees are unlikely to be applicable to tropical arthropods; (2) it is imperative that estimates of global biodiversity derived from mass collecting of arthropods in tropical rainforests embrace the strong vertical and seasonal partitioning observed here; and (3) given the high species turnover observed between seasons, global climate change may have severe consequences for rainforest arthropods. KW - trees KW - species richness KW - beta-diveristy KW - strategy KW - turnover KW - similarity KW - biodiversity KW - specialization KW - herbivorous insects KW - assemblages Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-136393 VL - 10 IS - 12 ER -