TY - JOUR A1 - Appelt-Menzel, Antje A1 - Cubukova, Alevtina A1 - Günther, Katharina A1 - Edenhofer, Frank A1 - Piontek, Jörg A1 - Krause, Gerd A1 - Stüber, Tanja A1 - Walles, Heike A1 - Neuhaus, Winfried A1 - Metzger, Marco T1 - Establishment of a Human Blood-Brain Barrier Co-culture Model Mimicking the Neurovascular Unit Using Induced Pluri- and Multipotent Stem Cells JF - Stem Cell Reports N2 - In vitro models of the human blood-brain barrier (BBB) are highly desirable for drug development. This study aims to analyze a set of ten different BBB culture models based on primary cells, human induced pluripotent stem cells (hiPSCs), and multipotent fetal neural stem cells (fNSCs). We systematically investigated the impact of astrocytes, pericytes, and NSCs on hiPSC-derived BBB endothelial cell function and gene expression. The quadruple culture models, based on these four cell types, achieved BBB characteristics including transendothelial electrical resistance (TEER) up to 2,500 Ω cm\(^{2}\) and distinct upregulation of typical BBB genes. A complex in vivo-like tight junction (TJ) network was detected by freeze-fracture and transmission electron microscopy. Treatment with claudin-specific TJ modulators caused TEER decrease, confirming the relevant role of claudin subtypes for paracellular tightness. Drug permeability tests with reference substances were performed and confirmed the suitability of the models for drug transport studies. KW - blood-brain barrier (BBB) model KW - human induced pluripotent stem cells (hiPSCs)human induced pluripotent stem cells (hiPSCs) KW - multipotent fetal neural stem cells (fNSCs) KW - neurovascular unit in vitro Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170982 VL - 8 IS - 4 ER - TY - JOUR A1 - Schwedhelm, Ivo A1 - Zdzieblo, Daniela A1 - Appelt-Menzel, Antje A1 - Berger, Constantin A1 - Schmitz, Tobias A1 - Schuldt, Bernhard A1 - Franke, Andre A1 - Müller, Franz-Josef A1 - Pless, Ole A1 - Schwarz, Thomas A1 - Wiedemann, Philipp A1 - Walles, Heike A1 - Hansmann, Jan T1 - Automated real-time monitoring of human pluripotent stem cell aggregation in stirred tank reactors JF - Scientific Reports N2 - The culture of human induced pluripotent stem cells (hiPSCs) at large scale becomes feasible with the aid of scalable suspension setups in continuously stirred tank reactors (CSTRs). Innovative monitoring options and emerging automated process control strategies allow for the necessary highly defined culture conditions. Next to standard process characteristics such as oxygen consumption, pH, and metabolite turnover, a reproducible and steady formation of hiPSC aggregates is vital for process scalability. In this regard, we developed a hiPSC-specific suspension culture unit consisting of a fully monitored CSTR system integrated into a custom-designed and fully automated incubator. As a step towards cost-effective hiPSC suspension culture and to pave the way for flexibility at a large scale, we constructed and utilized tailored miniature CSTRs that are largely made from three-dimensional (3D) printed polylactic acid (PLA) filament, which is a low-cost material used in fused deposition modelling. Further, the monitoring tool for hiPSC suspension cultures utilizes in situ microscopic imaging to visualize hiPSC aggregation in real-time to a statistically significant degree while omitting the need for time-intensive sampling. Suitability of our culture unit, especially concerning the developed hiPSC-specific CSTR system, was proven by demonstrating pluripotency of CSTR-cultured hiPSCs at RNA (including PluriTest) and protein level. KW - Biomedical engineering KW - Stem-cell biotechnology Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-202649 VL - 9 ER -