TY - JOUR A1 - Stritt, Simon A1 - Nurden, Paquita A1 - Favier, Remi A1 - Favier, Marie A1 - Ferioli, Silvia A1 - Gotru, Sanjeev K. A1 - van Eeuwijk, Judith M.M. A1 - Schulze, Harald A1 - Nurden, Alan T. A1 - Lambert, Michele P. A1 - Turro, Ernest A1 - Burger-Stritt, Stephanie A1 - Matsushita, Masayuki A1 - Mittermeier, Lorenz A1 - Ballerini, Paola A1 - Zierler, Susanna A1 - Laffan, Michael A. A1 - Chubanov, Vladimir A1 - Gudermann, Thomas A1 - Nieswandt, Bernhard A1 - Braun, Attila T1 - Defects in TRPM7 channel function deregulate thrombopoiesis through altered cellular Mg\(^{2+}\) homeostasis and cytoskeletal architecture JF - Nature Communications N2 - Mg\(^{2+}\) plays a vital role in platelet function, but despite implications for life-threatening conditions such as stroke or myocardial infarction, the mechanisms controlling [Mg\(^{2+}\)]i in megakaryocytes (MKs) and platelets are largely unknown. Transient receptor potential melastatin-like 7 channel (TRPM7) is a ubiquitous, constitutively active cation channel with a cytosolic α-kinase domain that is critical for embryonic development and cell survival. Here we report that impaired channel function of TRPM7 in MKs causes macrothrombocytopenia in mice (Trpm7\(^{fl/fl-Pf4Cre}\)) and likely in several members of a human pedigree that, in addition, suffer from atrial fibrillation. The defect in platelet biogenesis is mainly caused by cytoskeletal alterations resulting in impaired proplatelet formation by Trpm7\(^{fl/fl-Pf4Cre}\) MKs, which is rescued by Mg\(^{2+}\) supplementation or chemical inhibition of non-muscle myosin IIA heavy chain activity. Collectively, our findings reveal that TRPM7 dysfunction may cause macrothrombocytopenia in humans and mice. KW - Cytoskeleton KW - homeostasisIon channels KW - thrombopoiesis Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-173843 VL - 7 ER - TY - JOUR A1 - Gotru, Sanjeev Kiran A1 - van Geffen, Johanna P. A1 - Nagy, Magdolna A1 - Mammadova-Bach, Elmina A1 - Eilenberger, Julia A1 - Volz, Julia A1 - Manukjan, Georgi A1 - Schulze, Harald A1 - Wagner, Leonard A1 - Eber, Stefan A1 - Schambeck, Christian A1 - Deppermann, Carsten A1 - Brouns, Sanne A1 - Nurden, Paquita A1 - Greinacher, Andreas A1 - Sachs, Ulrich A1 - Nieswandt, Bernhard A1 - Hermanns, Heike M. A1 - Heemskerk, Johan W. M. A1 - Braun, Attila T1 - Defective Zn2+ homeostasis in mouse and human platelets with α- and δ-storage pool diseases JF - Scientific Reports N2 - Zinc (Zn2+) can modulate platelet and coagulation activation pathways, including fibrin formation. Here, we studied the (patho)physiological consequences of abnormal platelet Zn2+ storage and release. To visualize Zn2+ storage in human and mouse platelets, the Zn2+ specific fluorescent dye FluoZin3 was used. In resting platelets, the dye transiently accumulated into distinct cytosolic puncta, which were lost upon platelet activation. Platelets isolated from Unc13d−/− mice, characterized by combined defects of α/δ granular release, showed a markedly impaired Zn2+ release upon activation. Platelets from Nbeal2−/− mice mimicking Gray platelet syndrome (GPS), characterized by primarily loss of the α-granule content, had strongly reduced Zn2+ levels, which was also confirmed in primary megakaryocytes. In human platelets isolated from patients with GPS, Hermansky-Pudlak Syndrome (HPS) and Storage Pool Disease (SPD) altered Zn2+ homeostasis was detected. In turbidity and flow based assays, platelet-dependent fibrin formation was impaired in both Nbeal2−/− and Unc13d−/− mice, and the impairment could be partially restored by extracellular Zn2+. Altogether, we conclude that the release of ionic Zn2+ store from secretory granules upon platelet activation contributes to the procoagulant role of Zn2+ in platelet-dependent fibrin formation. KW - coagulation system KW - metals Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-227455 VL - 9 ER -