TY - JOUR A1 - Jones, Julia C. A1 - Fruciano, Carmelo A1 - Keller, Anja A1 - Schartl, Manfred A1 - Meyer, Axel T1 - Evolution of the elaborate male intromittent organ of Xiphophorus fishes JF - Ecology and Evolution N2 - Internally fertilizing animals show a remarkable diversity in male genital morphology that is associated with sexual selection, and these traits are thought to be evolving particularly rapidly. Male fish in some internally fertilizing species have “gonopodia,” highly modified anal fins that are putatively important for sexual selection. However, our understanding of the evolution of genital diversity remains incomplete. Contrary to the prediction that male genital traits evolve more rapidly than other traits, here we show that gonopodial traits and other nongonopodial traits exhibit similar evolutionary rates of trait change and also follow similar evolutionary models in an iconic genus of poeciliid fish (Xiphophorus spp.). Furthermore, we find that both mating and nonmating natural selection mechanisms are unlikely to be driving the diverse Xiphophorus gonopodial morphology. Putative holdfast features of the male genital organ do not appear to be influenced by water flow, a candidate selective force in aquatic habitats. Additionally, interspecific divergence in gonopodial morphology is not significantly higher between sympatric species, than between allopatric species, suggesting that male genitals have not undergone reproductive character displacement. Slower rates of evolution in gonopodial traits compared with a subset of putatively sexually selected nongenital traits suggest that different selection mechanisms may be acting on the different trait types. Further investigations of this elaborate trait are imperative to determine whether it is ultimately an important driver of speciation. KW - Male intromittent organ KW - reproductive character displacement KW - sexual selection KW - species diversification KW - Xiphophorus fish Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-164956 VL - 6 IS - 20 ER - TY - JOUR A1 - Seher, Axel A1 - Nickel, Joachim A1 - Mueller, Thomas D. A1 - Kneitz, Susanne A1 - Gebhardt, Susanne A1 - Meyer ter Vehn, Tobias A1 - Schlunck, Guenther A1 - Sebald, Walter T1 - Gene expression profiling of connective tissue growth factor (CTGF) stimulated primary human tenon fibroblasts reveals an inflammatory and wound healing response in vitro JF - Molecular Vision N2 - Purpose: The biologic relevance of human connective tissue growth factor (hCTGF) for primary human tenon fibroblasts (HTFs) was investigated by RNA expression profiling using affymetrix (TM) oligonucleotide array technology to identify genes that are regulated by hCTGF. Methods: Recombinant hCTGF was expressed in HEK293T cells and purified by affinity and gel chromatography. Specificity and biologic activity of hCTGF was confirmed by biosensor interaction analysis and proliferation assays. For RNA expression profiling HTFs were stimulated with hCTGF for 48h and analyzed using affymetrix (TM) oligonucleotide array technology. Results were validated by real time RT-PCR. Results: hCTGF induces various groups of genes responsible for a wound healing and inflammatory response in HTFs. A new subset of CTGF inducible inflammatory genes was discovered (e.g., chemokine [C-X-C motif] ligand 1 [CXCL1], chemokine [C-X-C motif] ligand 6 [CXCL6], interleukin 6 [IL6], and interleukin 8 [IL8]). We also identified genes that can transmit the known biologic functions initiated by CTGF such as proliferation and extracellular matrix remodelling. Of special interest is a group of genes, e.g., osteoglycin (OGN) and osteomodulin (OMD), which are known to play a key role in osteoblast biology. Conclusions: This study specifies the important role of hCTGF for primary tenon fibroblast function. The RNA expression profile yields new insights into the relevance of hCTGF in influencing biologic processes like wound healing, inflammation, proliferation, and extracellular matrix remodelling in vitro via transcriptional regulation of specific genes. The results suggest that CTGF potentially acts as a modulating factor in inflammatory and wound healing response in fibroblasts of the human eye. KW - Bone morphogenetic protein-2 KW - Smooth-muscle-cells KW - Myofibroblast differentiation KW - TGF-beta KW - CYR61 KW - Proliferation KW - Mechanisms KW - Apoptosis KW - Receptor KW - Cancer Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-140189 VL - 17 IS - 08. Okt ER - TY - JOUR A1 - Meyer, Axel A1 - Morrissey, Jean M. A1 - Schartl, Manfred T1 - Recurrent origin of a sexually selected trait in Xiphophorus fishes inferred from a molecular phylogeny N2 - DARWIN\(^1\) believed that sexual selection accounts for the evolution of exaggerated male ornaments, such as the sword-like caudal fin extensions of male fishes of the genus Xiphophorus, that appear detrimental to survival. Swordtails continue to feature prominently in empirical work and theories of sexual selection; the pre-existing bias hypothesis has been offered as an explanation for the evolution of swords in these fishes\(^{2,3}\). Based upon a largely morphological phylogeny, this hypothesis suggests that female preference to mate with sworded males arose in ancestrally swordless species, thus pre-dating the origin of the sword itself and directly driving its evolution. Here we present a molecular phylogeny (based on mitochondrial and nuclear DNA sequences) of Xiphophorus which differs from the traditional one: it indicates that the sword originated and was lost repeatedly. Our phylogeny suggests that the ancestor of the genus is more likely to have possessed a sword than not, thus questioning the applicability of the pre-existing bias hypothesis as an explanation for the cvolution of this sexually selected trait. KW - Physiologische Chemie Y1 - 1994 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-61569 ER - TY - JOUR A1 - Kang, Ji Hyoun A1 - Schartl, Manfred A1 - Walter, Ronald B. A1 - Meyer, Axel T1 - Comprehensive phylogenetic analysis of all species of swordtails and platies (Pisces: Genus Xiphophorus) uncovers a hybrid origin of a swordtail fish, Xiphophorus monticolus, and demonstrates that the sexually selected sword originated in the ancestral lineage of the genus, but was lost again secondarily JF - BMC Evolutionary Biology N2 - Background: Males in some species of the genus Xiphophorus, small freshwater fishes from Meso-America, have an extended caudal fin, or sword - hence their common name "swordtails". Longer swords are preferred by females from both sworded and - surprisingly also, non-sworded (platyfish) species that belong to the same genus. Swordtails have been studied widely as models in research on sexual selection. Specifically, the pre-existing bias hypothesis was interpreted to best explain the observed bias of females in presumed ancestral lineages of swordless species that show a preference for assumed derived males with swords over their conspecific swordless males. However, many of the phylogenetic relationships within this genus still remained unresolved. Here we construct a comprehensive molecular phylogeny of all 26 known Xiphophorus species, including the four recently described species (X. kallmani, X. mayae, X. mixei and X. monticolus). We use two mitochondrial and six new nuclear markers in an effort to increase the understanding of the evolutionary relationships among the species in this genus. Based on the phylogeny, the evolutionary history and character state evolution of the sword was reconstructed and found to have originated in the common ancestral lineage of the genus Xiphophorus and that it was lost again secondarily. Results: We estimated the evolutionary relationships among all known species of the genus Xiphophorus based on the largest set of DNA markers so far. The phylogeny indicates that one of the newly described swordtail species, Xiphophorus monticolus, is likely to have arisen through hybridization since it is placed with the southern platyfish in the mitochondrial phylogeny, but with the southern swordtails in the nuclear phylogeny. Such discordance between these two types of markers is a strong indication for a hybrid origin. Additionally, by using a maximum likelihood approach the possession of the sexually selected sword trait is shown to be the most likely ancestral state for the genus Xiphophorus. Further, we provide a well supported estimation of the phylogenetic relationships between the previously unresolved northern swordtail groups. Conclusions: This comprehensive molecular phylogeny of the entire genus Xiphophorus provides evidence that a second swordtail species, X. monticolus, arose through hybridization. Previously, we demonstrated that X. clemenciae, another southern swordtail species, arose via hybridization. These findings highlight the potential key role of hybridization in the evolution of this genus and suggest the need for further investigations into how hybridization contributes to speciation more generally. KW - parten-offspring conflict KW - introgressive hybridization KW - mitochondrial DNA KW - molecular phylogeny KW - likelihood approach KW - tree selection KW - preexisting bias KW - adaptive radiation KW - evolution KW - poeciliidae Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-121853 SN - 1471-2148 VL - 13 IS - 25 ER - TY - JOUR A1 - Kang, Ji Hyoun A1 - Manousaki, Tereza A1 - Franchini, Paolo A1 - Kneitz, Susanne A1 - Schartl, Manfred A1 - Meyer, Axel T1 - Transcriptomics of two evolutionary novelties: how to make a sperm-transfer organ out of an anal fin and a sexually selected "sword" out of a caudal fin JF - Ecology and Evolution N2 - Swords are exaggerated male ornaments of swordtail fishes that have been of great interest to evolutionary biologists ever since Darwin described them in the Descent of Man (1871). They are a novel sexually selected trait derived from modified ventral caudal fin rays and are only found in the genus Xiphophorus. Another phylogenetically more widespread and older male trait is the gonopodium, an intromittent organ found in all poeciliid fishes, that is derived from a modified anal fin. Despite many evolutionary and behavioral studies on both traits, little is known so far about the molecular mechanisms underlying their development. By investigating transcriptomic changes (utilizing a RNA-Seq approach) in response to testosterone treatment in the swordtail fish, Xiphophorus hellerii, we aimed to better understand the architecture of the gene regulatory networks underpinning the development of these two evolutionary novelties. Large numbers of genes with tissue-specific expression patterns were identified. Among the sword genes those involved in embryonic organ development, sexual character development and coloration were highly expressed, while in the gonopodium rather more morphogenesis-related genes were found. Interestingly, many genes and genetic pathways are shared between both developing novel traits derived from median fins: the sword and the gonopodium. Our analyses show that a larger set of gene networks was co-opted during the development and evolution of the older gonopodium than in the younger, and morphologically less complex trait, the sword. We provide a catalog of candidate genes for future efforts to dissect the development of those sexually selected exaggerated male traits in swordtails. KW - mouse testis differentiation KW - fishes Xiphophorus KW - beetle horns KW - gonopodium KW - RNA-Seq KW - swordtails KW - Xiphophorus KW - key innovation KW - male-specific traits KW - Co-option KW - genus Xiphophorus KW - hybrid origin KW - Drosophila melanogaster KW - expression analysis KW - cell proliferation KW - preexisting bias KW - sex combs Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-144139 VL - 5 IS - 4 ER - TY - JOUR A1 - Ziegler, Alice A1 - Meyer, Hanna A1 - Otte, Insa A1 - Peters, Marcell K. A1 - Appelhans, Tim A1 - Behler, Christina A1 - Böhning-Gaese, Katrin A1 - Classen, Alice A1 - Detsch, Florian A1 - Deckert, Jürgen A1 - Eardley, Connal D. A1 - Ferger, Stefan W. A1 - Fischer, Markus A1 - Gebert, Friederike A1 - Haas, Michael A1 - Helbig-Bonitz, Maria A1 - Hemp, Andreas A1 - Hemp, Claudia A1 - Kakengi, Victor A1 - Mayr, Antonia V. A1 - Ngereza, Christine A1 - Reudenbach, Christoph A1 - Röder, Juliane A1 - Rutten, Gemma A1 - Schellenberger Costa, David A1 - Schleuning, Matthias A1 - Ssymank, Axel A1 - Steffan-Dewenter, Ingolf A1 - Tardanico, Joseph A1 - Tschapka, Marco A1 - Vollstädt, Maximilian G. R. A1 - Wöllauer, Stephan A1 - Zhang, Jie A1 - Brandl, Roland A1 - Nauss, Thomas T1 - Potential of airborne LiDAR derived vegetation structure for the prediction of animal species richness at Mount Kilimanjaro JF - Remote Sensing N2 - The monitoring of species and functional diversity is of increasing relevance for the development of strategies for the conservation and management of biodiversity. Therefore, reliable estimates of the performance of monitoring techniques across taxa become important. Using a unique dataset, this study investigates the potential of airborne LiDAR-derived variables characterizing vegetation structure as predictors for animal species richness at the southern slopes of Mount Kilimanjaro. To disentangle the structural LiDAR information from co-factors related to elevational vegetation zones, LiDAR-based models were compared to the predictive power of elevation models. 17 taxa and 4 feeding guilds were modeled and the standardized study design allowed for a comparison across the assemblages. Results show that most taxa (14) and feeding guilds (3) can be predicted best by elevation with normalized RMSE values but only for three of those taxa and two of those feeding guilds the difference to other models is significant. Generally, modeling performances between different models vary only slightly for each assemblage. For the remaining, structural information at most showed little additional contribution to the performance. In summary, LiDAR observations can be used for animal species prediction. However, the effort and cost of aerial surveys are not always in proportion with the prediction quality, especially when the species distribution follows zonal patterns, and elevation information yields similar results. KW - biodiversity KW - species richness KW - LiDAR KW - elevation KW - partial least square regression KW - arthropods KW - birds KW - bats KW - predictive modeling Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-262251 SN - 2072-4292 VL - 14 IS - 3 ER - TY - JOUR A1 - Schartl, Manfred A1 - Kneitz, Susanne A1 - Volkoff, Helene A1 - Adolfi, Mateus A1 - Schmidt, Cornelia A1 - Fischer, Petra A1 - Minx, Patrick A1 - Tomlinson, Chad A1 - Meyer, Axel A1 - Warren, Wesley C. T1 - The piranha genome provides molecular insight associated to its unique feeding behavior JF - Genome Biology and Evolution N2 - The piranha enjoys notoriety due to its infamous predatory behavior but much is still not understood about its evolutionary origins and the underlying molecular mechanisms for its unusual feeding biology. We sequenced and assembled the red-bellied piranha (Pygocentrus nattereri) genome to aid future phenotypic and genetic investigations. The assembled draft genome is similar to other related fishes in repeat composition and gene count. Our evaluation of genes under positive selection suggests candidates for adaptations of piranhas’ feeding behavior in neural functions, behavior, and regulation of energy metabolism. In the fasted brain, we find genes differentially expressed that are involved in lipid metabolism and appetite regulation as well as genes that may control the aggression/boldness behavior of hungry piranhas. Our first analysis of the piranha genome offers new insight and resources for the study of piranha biology and for feeding motivation and starvation in other organisms. KW - whole-genome sequencing KW - genome annotation KW - comparative genomics KW - RNA-seq transcriptome KW - energy homeostasis Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-202218 VL - 11 IS - 8 ER - TY - JOUR A1 - Du, Kang A1 - Wuertz, Sven A1 - Adolfi, Mateus A1 - Kneitz, Susanne A1 - Stöck, Matthias A1 - Oliveira, Marcos A1 - Nóbrega, Rafael A1 - Ormanns, Jenny A1 - Kloas, Werner A1 - Feron, Romain A1 - Klopp, Christophe A1 - Parrinello, Hugues A1 - Journot, Laurent A1 - He, Shunping A1 - Postlethwait, John A1 - Meyer, Axel A1 - Guiguen, Yann A1 - Schartl, Manfred T1 - The genome of the arapaima (Arapaima gigas) provides insights into gigantism, fast growth and chromosomal sex determination system JF - Scientific Reports N2 - We have sequenced the genome of the largest freshwater fish species of the world, the arapaima. Analysis of gene family dynamics and signatures of positive selection identified genes involved in the specific adaptations and unique features of this iconic species, in particular it’s large size and fast growth. Genome sequences from both sexes combined with RAD-tag analyses from other males and females led to the isolation of male-specific scaffolds and supports an XY sex determination system in arapaima. Whole transcriptome sequencing showed that the product of the gland-like secretory organ on the head surface of males and females may not only provide nutritional fluid for sex-unbiased parental care, but that the organ itself has a more specific function in males, which engage more in parental care. KW - Genome KW - Genomics Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-201333 VL - 9 ER -