TY - JOUR A1 - Edgecock, T. R. A1 - Caretta, O. A1 - Davenne, T. A1 - Densam, C. A1 - Fitton, M. A1 - Kelliher, D. A1 - Loveridge, P. A1 - Machida, S. A1 - Prior, C. A1 - Rogers, C. A1 - Rooney, M. A1 - Thomason, J. A1 - Wilcox, D. A1 - Wildner, E. A1 - Efthymiopoulos, I. A1 - Garoby, R. A1 - Gilardoni, S. A1 - Hansen, C. A1 - Benedetto, E. A1 - Jensen, E. A1 - Kosmicki, A. A1 - Martini, M. A1 - Osborne, J. A1 - Prior, G. A1 - Stora, T. A1 - Melo Mendonca, T. A1 - Vlachoudis, V. A1 - Waaijer, C. A1 - Cupial, P. A1 - Chancé, A. A1 - Longhin, A. A1 - Payet, J. A1 - Zito, M. A1 - Baussan, E. A1 - Bobeth, C. A1 - Bouquerel, E. A1 - Dracos, M. A1 - Gaudiot, G. A1 - Lepers, B. A1 - Osswald, F. A1 - Poussot, P. A1 - Vassilopoulos, N. A1 - Wurtz, J. A1 - Zeter, V. A1 - Bielski, J. A1 - Kozien, M. A1 - Lacny, L. A1 - Skoczen, B. A1 - Szybinski, B. A1 - Ustrycka, A. A1 - Wroblewski, A. A1 - Marie-Jeanne, M. A1 - Balint, P. A1 - Fourel, C. A1 - Giraud, J. A1 - Jacob, J. A1 - Lamy, T. A1 - Latrasse, L. A1 - Sortais, P. A1 - Thuillier, T. A1 - Mitrofanov, S. A1 - Loiselet, M. A1 - Keutgen, Th. A1 - Delbar, Th. A1 - Debray, F. A1 - Trophine, C. A1 - Veys, S. A1 - Daversin, C. A1 - Zorin, V. A1 - Izotov, I. A1 - Skalyga, V. A1 - Burt, G. A1 - Dexter, A. C. A1 - Kravchuk, V. L. A1 - Marchi, T. A1 - Cinausero, M. A1 - Gramegna, F. A1 - De Angelis, G. A1 - Prete, G. A1 - Collazuol, G. A1 - Laveder, M. A1 - Mazzocco, M. A1 - Mezzetto, M. A1 - Signorini, C. A1 - Vardaci, E. A1 - Di Nitto, A. A1 - Brondi, A. A1 - La Rana, G. A1 - Migliozzi, P. A1 - Moro, R. A1 - Palladino, V. A1 - Gelli, N. A1 - Berkovits, D. A1 - Hass, M. A1 - Hirsh, T. Y. A1 - Schuhmann, M. A1 - Stahl, A. A1 - Wehner, J. A1 - Bross, A. A1 - Kopp, J. A1 - Neuffer, D. A1 - Wands, R. A1 - Bayes, R. A1 - Laing, A. A1 - Soler, P. A1 - Agarwalla, S. K. A1 - Cervera Villanueva, A. A1 - Donini, A. A1 - Ghosh, T. A1 - Gómez Cadenas, J. J. A1 - Hernández, P. A1 - Martín-Albo, J. A1 - Mena, O. A1 - Burguet-Castell, J. A1 - Agostino, L. A1 - Buizza-Avanzini, M. A1 - Marafini, M. A1 - Patzak, T. A1 - Tonazzo, A. A1 - Duchesneau, D. A1 - Mosca, L. A1 - Bogomilov, M. A1 - Karadzhov, Y. A1 - Matev, R. A1 - Tsenov, R. A1 - Akhmedov, E. A1 - Blennow, M. A1 - Lindner, M. A1 - Schwetz, T. A1 - Fernández Martinez, E. A1 - Maltoni, M. A1 - Menéndez, J. A1 - Giunti, C. A1 - González García, M. C. A1 - Salvado, J. A1 - Coloma, P. A1 - Huber, P. A1 - Li, T. A1 - López Pavón, J. A1 - Orme, C. A1 - Pascoli, S. A1 - Meloni, D. A1 - Tang, J. A1 - Winter, W. A1 - Ohlsson, T. A1 - Zhang, H. A1 - Scotto-Lavina, L. A1 - Terranova, F. A1 - Bonesini, M. A1 - Tortora, L. A1 - Alekou, A. A1 - Aslaninejad, M. A1 - Bontoiu, C. A1 - Kurup, A. A1 - Jenner, L. J. A1 - Long, K. A1 - Pasternak, J. A1 - Pozimski, J. A1 - Back, J. J. A1 - Harrison, P. A1 - Beard, K. A1 - Bogacz, A. A1 - Berg, J. S. A1 - Stratakis, D. A1 - Witte, H. A1 - Snopok, P. A1 - Bliss, N. A1 - Cordwell, M. A1 - Moss, A. A1 - Pattalwar, S. A1 - Apollonio, M. T1 - High intensity neutrino oscillation facilities in Europe JF - Physical Review Special Topics-Accelerators and Beams N2 - The EUROnu project has studied three possible options for future, high intensity neutrino oscillation facilities in Europe. The first is a Super Beam, in which the neutrinos come from the decay of pions created by bombarding targets with a 4 MW proton beam from the CERN High Power Superconducting Proton Linac. The far detector for this facility is the 500 kt MEMPHYS water Cherenkov, located in the Frejus tunnel. The second facility is the Neutrino Factory, in which the neutrinos come from the decay of mu(+) and mu(-) beams in a storage ring. The far detector in this case is a 100 kt magnetized iron neutrino detector at a baseline of 2000 km. The third option is a Beta Beam, in which the neutrinos come from the decay of beta emitting isotopes, in particular He-6 and Ne-18, also stored in a ring. The far detector is also the MEMPHYS detector in the Frejus tunnel. EUROnu has undertaken conceptual designs of these facilities and studied the performance of the detectors. Based on this, it has determined the physics reach of each facility, in particular for the measurement of CP violation in the lepton sector, and estimated the cost of construction. These have demonstrated that the best facility to build is the Neutrino Factory. However, if a powerful proton driver is constructed for another purpose or if the MEMPHYS detector is built for astroparticle physics, the Super Beam also becomes very attractive. KW - EMMA KW - beta-beam Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-126611 VL - 16 IS - 2 ER - TY - JOUR A1 - Rudel, Thomas A1 - Prusty, Bhupesh K. A1 - Siegl, Christine A1 - Hauck, Petra A1 - Hain, Johannes A1 - Korhonen, Suvi J. A1 - Hiltunen-Back, Eija A1 - Poulakkainen, Mirja T1 - Chlamydia trachomatis Infection Induces Replication of Latent HHV-6 JF - PLoS ONE N2 - Human herpesvirus-6 (HHV-6) exists in latent form either as a nuclear episome or integrated into human chromosomes in more than 90% of healthy individuals without causing clinical symptoms. Immunosuppression and stress conditions can reactivate HHV-6 replication, associated with clinical complications and even death. We have previously shown that co-infection of Chlamydia trachomatis and HHV-6 promotes chlamydial persistence and increases viral uptake in an in vitro cell culture model. Here we investigated C. trachomatis-induced HHV-6 activation in cell lines and fresh blood samples from patients having Chromosomally integrated HHV-6 (CiHHV-6). We observed activation of latent HHV-6 DNA replication in CiHHV-6 cell lines and fresh blood cells without formation of viral particles. Interestingly, we detected HHV-6 DNA in blood as well as cervical swabs from C. trachomatis-infected women. Low virus titers correlated with high C. trachomatis load and vice versa, demonstrating a potentially significant interaction of these pathogens in blood cells and in the cervix of infected patients. Our data suggest a thus far underestimated interference of HHV-6 and C. trachomatis with a likely impact on the disease outcome as consequence of co-infection. KW - blood KW - chlamydia KW - chlamydia infection KW - chlamydia trachomatis KW - DNA replication KW - macrophages KW - polymerase chain reaction KW - viral load Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-96731 ER -