TY - JOUR A1 - Blömer, Nadja A1 - Pachel, Christina A1 - Hofmann, Urlich A1 - Nordbeck, Peter A1 - Bauer, Wolfgang A1 - Mathes, Denise A1 - Frey, Anna A1 - Bayer, Barbara A1 - Vogel, Benjamin A1 - Ertl, Georg T1 - 5-Lipoxygenase facilitates healing after myocardial infarction JF - Basic Research in Cardiology N2 - Early healing after myocardial infarction (MI) is characterized by a strong inflammatory reaction. Most leukotrienes are pro-inflammatory and are therefore potential mediators of healing and remodeling after myocardial ischemia. The enzyme 5-lipoxygenase (5-LOX) has a key role in the transformation of arachidonic acid in leukotrienes. Thus, we tested the effect of 5-LOX on healing after MI. After chronic coronary artery ligation, early mortality was significantly increased in 5-LOX\(^{−/−}\) when compared to matching wildtype (WT) mice due to left ventricular rupture. This effect could be reproduced in mice treated with the 5-LOX inhibitor Zileuton. A perfusion mismatch due to the vasoactive potential of leukotrienes is not responsible for left ventricular rupture since local blood flow assessed by magnetic resonance perfusion measurements was not different. However, after MI, there was an accentuation of the inflammatory reaction with an increase of pro-inflammatory macrophages. Yet, mortality was not changed in chimeric mice (WT vs. 5-LOX\(^{−/−}\) bone marrow in 5-LOX\(^{−/−}\) animals), indicating that an altered function of 5-LOX\(^{−/−}\) inflammatory cells is not responsible for the phenotype. Collagen production and accumulation of fibroblasts were significantly reduced in 5-LOX\(^{−/−}\) mice in vivo after MI. This might be due to an impaired migration of 5-LOX\(^{−/−}\) fibroblasts, as shown in vitro to serum. In conclusion, a lack or inhibition of 5-LOX increases mortality after MI because of healing defects. This is not mediated by a change in local blood flow, but through an altered inflammation and/or fibroblast function. KW - lipoxygenase KW - myocardial infarction KW - extracellular matrix remodeling KW - inflammation Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-132602 VL - 108 IS - 4 ER - TY - JOUR A1 - Frantz, Stefan A1 - Klaiber, Michael A1 - Baba, Hideo A. A1 - Oberwinkler, Heinz A1 - Völker, Katharina A1 - Gaßner, Birgit A1 - Bayer, Barbara A1 - Abeßer, Marco A1 - Schuh, Kai A1 - Feil, Robert A1 - Hofmann, Franz A1 - Kuhn, Michaela T1 - Stress-dependent dilated cardiomyopathy in mice with cardiomyocyte-restricted inactivation of cyclic GMP-dependent protein kinase I JF - European Heart Journal N2 - Aims: Cardiac hypertrophy is a common and often lethal complication of arterial hypertension. Elevation of myocyte cyclic GMP levels by local actions of endogenous atrial natriuretic peptide (ANP) and C-type natriuretic peptide (CNP) or by pharmacological inhibition of phosphodiesterase-5 was shown to counter-regulate pathological hypertrophy. It was suggested that cGMP-dependent protein kinase I (cGKI) mediates this protective effect, although the role in vivo is under debate. Here, we investigated whether cGKI modulates myocyte growth and/or function in the intact organism. Methods and results: To circumvent the systemic phenotype associated with germline ablation of cGKI, we inactivated the murine cGKI gene selectively in cardiomyocytes by Cre/loxP-mediated recombination. Mice with cardiomyocyte-restricted cGKI deletion exhibited unaltered cardiac morphology and function under resting conditions. Also, cardiac hypertrophic and contractile responses to β-adrenoreceptor stimulation by isoprenaline (at 40 mg/kg/day during 1 week) were unaltered. However, angiotensin II (Ang II, at 1000 ng/kg/min for 2 weeks) or transverse aortic constriction (for 3 weeks) provoked dilated cardiomyopathy with marked deterioration of cardiac function. This was accompanied by diminished expression of the \([Ca^{2+}]_i\)-regulating proteins SERCA2a and phospholamban (PLB) and a reduction in PLB phosphorylation at Ser16, the specific target site for cGKI, resulting in altered myocyte \(Ca^{2+}_i\) homeostasis. In isolated adult myocytes, CNP, but not ANP, stimulated PLB phosphorylation, \(Ca^{2+}_i\)-handling, and contractility via cGKI. Conclusion: These results indicate that the loss of cGKI in cardiac myocytes compromises the hypertrophic program to pathological stimulation, rendering the heart more susceptible to dysfunction. In particular, cGKI mediates stimulatory effects of CNP on myocyte \(Ca^{2+}_i\) handling and contractility. KW - cyclic KW - GMPcGMP-dependent protein kinase I KW - cardiac hypertrophy KW - natriuretic peptide KW - Ca2+i handling Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-134693 VL - 34 ER - TY - JOUR A1 - Pachel, Christina A1 - Mathes, Denise A1 - Bayer, Barbara A1 - Dienesch, Charlotte A1 - Wangorsch, Gaby A1 - Heitzmann, Wolfram A1 - Lang, Isabell A1 - Ardehali, Hossein A1 - Ertl, Georg A1 - Dandekar, Thomas A1 - Wajant, Harald A1 - Frantz, Stefan T1 - Exogenous Administration of a Recombinant Variant of TWEAK Impairs Healing after Myocardial Infarction by Aggravation of Inflammation JF - PLoS ONE N2 - Background: Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) and its receptor fibroblast growth factorinducible 14 (Fn14) are upregulated after myocardial infarction (MI) in both humans and mice. They modulate inflammation and the extracellular matrix, and could therefore be important for healing and remodeling after MI. However, the function of TWEAK after MI remains poorly defined. Methods and results: Following ligation of the left coronary artery, mice were injected twice per week with a recombinant human serum albumin conjugated variant of TWEAK (HSA-Flag-TWEAK), mimicking the activity of soluble TWEAK. Treatment with HSA-Flag-TWEAK resulted in significantly increased mortality in comparison to the placebo group due to myocardial rupture. Infarct size, extracellular matrix remodeling, and apoptosis rates were not different after MI. However, HSA-Flag-TWEAK treatment increased infiltration of proinflammatory cells into the myocardium. Accordingly, depletion of neutrophils prevented cardiac ruptures without modulating all-cause mortality. Conclusion: Treatment of mice with HSA-Flag-TWEAK induces myocardial healing defects after experimental MI. This is mediated by an exaggerated neutrophil infiltration into the myocardium. KW - apoptosis KW - myocardial infarction KW - neutrophils KW - cytokines KW - inflammation KW - myocardium KW - heart KW - extracellular matrix Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-129889 VL - 8 IS - 11 ER - TY - JOUR A1 - Benz, Peter M. A1 - Merkel, Carla J. A1 - Offner, Kristin A1 - Abeßer, Marco A1 - Ullrich, Melanie A1 - Fischer, Tobias A1 - Bayer, Barbara A1 - Wagner, Helga A1 - Gambaryan, Stepan A1 - Ursitti, Jeanine A. A1 - Adham, Ibrahim M. A1 - Linke, Wolfgang A. A1 - Feller, Stephan M. A1 - Fleming, Ingrid A1 - Renné, Thomas A1 - Frantz, Stefan A1 - Unger, Andreas A1 - Schuh, Kai T1 - Mena/VASP and alphaII-Spectrin complexes regulate cytoplasmic actin networks in cardiomyocytes and protect from conduction abnormalities and dilated cardiomyopathy JF - Cell Communication and Signaling N2 - Background: In the heart, cytoplasmic actin networks are thought to have important roles in mechanical support, myofibrillogenesis, and ion channel function. However, subcellular localization of cytoplasmic actin isoforms and proteins involved in the modulation of the cytoplasmic actin networks are elusive. Mena and VASP are important regulators of actin dynamics. Due to the lethal phenotype of mice with combined deficiency in Mena and VASP, however, distinct cardiac roles of the proteins remain speculative. In the present study, we analyzed the physiological functions of Mena and VASP in the heart and also investigated the role of the proteins in the organization of cytoplasmic actin networks. Results: We generated a mouse model, which simultaneously lacks Mena and VASP in the heart. Mena/VASP double-deficiency induced dilated cardiomyopathy and conduction abnormalities. In wild-type mice, Mena and VASP specifically interacted with a distinct αII-Spectrin splice variant (SH3i), which is in cardiomyocytes exclusively localized at Z- and intercalated discs. At Z- and intercalated discs, Mena and β-actin localized to the edges of the sarcomeres, where the thin filaments are anchored. In Mena/VASP double-deficient mice, β-actin networks were disrupted and the integrity of Z- and intercalated discs was markedly impaired. Conclusions: Together, our data suggest that Mena, VASP, and αII-Spectrin assemble cardiac multi-protein complexes, which regulate cytoplasmic actin networks. Conversely, Mena/VASP deficiency results in disrupted β-actin assembly, Z- and intercalated disc malformation, and induces dilated cardiomyopathy and conduction abnormalities. KW - Mena/VASP KW - dilated cardiomyopathy KW - actin KW - heart KW - spectrin Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-128760 VL - 11 IS - 56 ER -