TY - JOUR A1 - Weiser, Jonas A1 - Cui, Jingjing A1 - Dewhurst, Rian D. A1 - Braunschweig, Holger A1 - Engels, Bernd A1 - Fantuzzi, Felipe T1 - Structure and bonding of proximity‐enforced main‐group dimers stabilized by a rigid naphthyridine diimine ligand JF - Journal of Computational Chemistry N2 - The development of ligands capable of effectively stabilizing highly reactive main‐group species has led to the experimental realization of a variety of systems with fascinating properties. In this work, we computationally investigate the electronic, structural, energetic, and bonding features of proximity‐enforced group 13–15 homodimers stabilized by a rigid expanded pincer ligand based on the 1,8‐naphthyridine (napy) core. We show that the redox‐active naphthyridine diimine (NDI) ligand enables a wide variety of structural motifs and element‐element interaction modes, the latter ranging from isolated, element‐centered lone pairs (e.g., E = Si, Ge) to cases where through‐space π bonds (E = Pb), element‐element multiple bonds (E = P, As) and biradical ground states (E = N) are observed. Our results hint at the feasibility of NDI‐E2 species as viable synthetic targets, highlighting the versatility and potential applications of napy‐based ligands in main‐group chemistry. KW - bond theory KW - computational chemistry KW - density functional calculations KW - main group elements KW - N ligands Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-312586 VL - 44 IS - 3 SP - 456 EP - 467 ER - TY - JOUR A1 - Lindl, Felix A1 - Lamprecht, Anna A1 - Arrowsmith, Merle A1 - Khitro, Eugen A1 - Rempel, Anna A1 - Dietz, Maximilian A1 - Wellnitz, Tim A1 - Bélanger‐Chabot, Guillaume A1 - Stoy, Andreas A1 - Paprocki, Valerie A1 - Prieschl, Dominik A1 - Lenczyk, Carsten A1 - Ramler, Jacqueline A1 - Lichtenberg, Crispin A1 - Braunschweig, Holger T1 - Aromatic 1,2‐Azaborinin‐1‐yls as Electron‐Withdrawing Anionic Nitrogen Ligands for Main Group Elements JF - Chemistry – A European Journal N2 - The 2‐aryl‐3,4,5,6‐tetraphenyl‐1,2‐azaborinines 1‐EMe\(_{3}\) and 2‐EMe\(_{3}\) (E=Si, Sn; aryl=Ph (1), Mes (=2,4,6‐trimethylphenyl, 2)) were synthesized by ring‐expansion of borole precursors with N\(_{3}\)EMe\(_{3}\)‐derived nitrenes. Desilylative hydrolysis of 1‐ and 2‐SiMe\(_{3}\) yielded the corresponding N‐protonated azaborinines, which were deprotonated with nBuLi or MN(SiMe\(_{3}\))\(_{2}\) (M=Na, K) to the corresponding group 1 salts, 1‐M and 2‐M. While the lithium salts crystallized as monomeric Lewis base adducts, the potassium salts formed coordination polymers or oligomers via intramolecular K⋅⋅⋅aryl π interactions. The reaction of 1‐M or 2‐M with CO\(_{2}\) yielded N‐carboxylate salts, which were derivatized by salt metathesis to methyl and silyl esters. Salt metathesis of 1‐M or 2‐M with methyl triflate, [Cp*BeCl] (Cp*=C\(_{5}\)Me\(_{5}\)), BBr\(_{2}\)Ar (Ar=Ph, Mes, 2‐thienyl), ECl\(_{3}\) (E=B, Al, Ga) and PX\(_{3}\) (X=Cl, Br) afforded the respective group 2, 13 and 15 1,2‐azaborinin‐2‐yl complexes. Salt metathesis of 1‐K with BBr\(_{3}\) resulted not only in N‐borylation but also Ph‐Br exchange between the endocyclic and exocyclic boron atoms. Solution \(^{11}\)B NMR data suggest that the 1,2‐azaborinin‐2‐yl ligand is similarly electron‐withdrawing to a bromide. In the solid state the endocyclic bond length alternation and the twisting of the C\(_{4}\)BN ring increase with the sterics of the substituents at the boron and nitrogen atoms, respectively. Regression analyses revealed that the downfield shift of the endocyclic \(^{11}\)B NMR resonances is linearly correlated to both the degree of twisting of the C\(_{4}\)BN ring and the tilt angle of the N‐substituent. Calculations indicate that the 1,2‐azaborinin‐1‐yl ligand has no sizeable π‐donor ability and that the aromaticity of the ring can be subtly tuned by the electronics of the N‐substituent. KW - 1,2-azaborinine KW - aromaticity KW - crystallographic analyses KW - N-functionalization KW - salt metathesis Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-312222 VL - 29 IS - 11 ER - TY - JOUR A1 - Witte, Robert A1 - Arrowsmith, Merle A1 - Lamprecht, Anna A1 - Schorr, Fabian A1 - Krummenacher, Ivo A1 - Braunschweig, Holger T1 - C−C and C−N Bond Activation, Lewis‐Base Coordination and One‐ and Two‐Electron Oxidation at a Linear Aminoborylene JF - Chemistry – A European Journal N2 - A cyclic alkyl(amino)carbene (CAAC)‐stabilized dicoordinate aminoborylene is synthesized by the twofold reduction of a [(CAAC)BCl\(_{2}\)(TMP)] (TMP=2,6‐tetramethylpiperidyl) precursor. NMR‐spectroscopic, X‐ray crystallographic and computational analyses confirm the cumulenic nature of the central C=B=N moiety. Irradiation of [(CAAC)B(TMP)] (2) resulted in an intramolecular C−C bond activation, leading to a doubly‐fused C\(_{10}\)BN heterocycle, while the reaction with acetonitrile resulted in an aryl migration from the CAAC to the acetonitrile nitrogen atom, concomitant with tautomerization of the latter to a boron‐bound allylamino ligand. One‐electron oxidation of 2 with CuX (X=Cl, Br) afforded the corresponding amino(halo)boryl radicals, which were characterized by EPR spectroscopy and DFT calculations. Placing 2 under an atmosphere of CO afforded the tricoordinate (CAAC,CO)‐stabilized aminoborylene. Finally, the twofold oxidation of 2 with chalcogens led, in the case of N\(_{2}\)O and sulfur, to the splitting of the B−C\(_{CAAC}\) bond and formation of the 2,4‐diamino‐1,3,2,4‐dichalcogenadiboretanes and CAAC‐chalcogen adducts, whereas with selenium a monomeric boraselenone was isolated, which showed some degree of B−Se multiple bonding. KW - bond activation KW - boraselenone KW - dicoordinate borylene KW - one-electron oxidation KW - push-pull stabilization Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-312491 VL - 29 IS - 16 ER - TY - JOUR A1 - Brückner, Tobias A1 - Ritschel, Benedikt A1 - Jiménez‐Halla, J. Oscar C. A1 - Fantuzzi, Felipe A1 - Duwe, Dario A1 - Markl, Christian A1 - Dewhurst, Rian D. A1 - Dietz, Maximilian A1 - Braunschweig, Holger T1 - Metal‐Free Intermolecular C−H Borylation of N‐Heterocycles at B−B Multiple Bonds JF - Angewandte Chemie International Edition N2 - Carbene‐stabilized diborynes of the form LBBL (L=N‐heterocyclic carbene (NHC) or cyclic alkyl(amino)carbene (CAAC)) induce rapid, high yielding, intermolecular ortho‐C−H borylation at N‐heterocycles at room temperature. A simple pyridyldiborene is formed when an NHC‐stabilized diboryne is combined with pyridine, while a CAAC‐stabilized diboryne leads to activation of two pyridine molecules to give a tricyclic alkylideneborane, which can be forced to undergo a further H‐shift resulting in a zwitterionic, doubly benzo‐fused 1,3,2,5‐diazadiborinine by heating. Use of the extended N‐heteroaromatic quinoline leads to a borylmethyleneborane under mild conditions via an unprecedented boron‐carbon exchange process. KW - Boron KW - Borylation KW - Carbene KW - Diboryne KW - Hydroarylation Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-312385 VL - 62 IS - 5 ER - TY - JOUR A1 - Härterich, Marcel A1 - Matler, Alexander A1 - Dewhurst, Rian D. A1 - Sachs, Andreas A1 - Oppel, Kai A1 - Stoy, Andreas A1 - Braunschweig, Holger T1 - A step-for-step main-group replica of the Fischer carbene synthesis at a borylene carbonyl JF - Nature Communications N2 - The Fischer carbene synthesis, involving the conversion of a transition metal (TM)-bound CO ligand to a carbene ligand of the form [=C(OR’)R] (R, R’ = organyl groups), is one of the seminal reactions in the history of organometallic chemistry. Carbonyl complexes of p-block elements, of the form [E(CO)n] (E = main-group fragment), are much less abundant than their TM cousins; this scarcity and the general instability of low-valent p-block species means that replicating the historical reactions of TM carbonyls is often very difficult. Here we present a step-for-step replica of the Fischer carbene synthesis at a borylene carbonyl involving nucleophilic attack at the carbonyl carbon followed by electrophilic quenching at the resultant acylate oxygen atom. These reactions provide borylene acylates and alkoxy-/silyloxy-substituted alkylideneboranes, main-group analogues of the archetypal transition metal acylate and Fischer carbene families, respectively. When either the incoming electrophile or the boron center has a modest steric profile, the electrophile instead attacks at the boron atom, leading to carbene-stabilized acylboranes – boron analogues of the well-known transition metal acyl complexes. These results constitute faithful main-group replicas of a number of historical organometallic processes and pave the way to further advances in the field of main-group metallomimetics. KW - chemical bonding KW - ligands Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-357270 VL - 14 ER -