TY - JOUR A1 - Langlhofer, Georg A1 - Villmann, Carmen T1 - The Intracellular Loop of the Glycine Receptor: It's not all about the Size JF - Frontiers in Molecular Neuroscience N2 - The family of Cys-loop receptors (CLRs) shares a high degree of homology and sequence identity. The overall structural elements are highly conserved with a large extracellular domain (ECD) harboring an α-helix and 10 β-sheets. Following the ECD, four transmembrane domains (TMD) are connected by intracellular and extracellular loop structures. Except the TM3–4 loop, their length comprises 7–14 residues. The TM3–4 loop forms the largest part of the intracellular domain (ICD) and exhibits the most variable region between all CLRs. The ICD is defined by the TM3–4 loop together with the TM1–2 loop preceding the ion channel pore. During the last decade, crystallization approaches were successful for some members of the CLR family. To allow crystallization, the intracellular loop was in most structures replaced by a short linker present in prokaryotic CLRs. Therefore, no structural information about the large TM3–4 loop of CLRs including the glycine receptors (GlyRs) is available except for some basic stretches close to TM3 and TM4. The intracellular loop has been intensively studied with regard to functional aspects including desensitization, modulation of channel physiology by pharmacological substances, posttranslational modifications, and motifs important for trafficking. Furthermore, the ICD interacts with scaffold proteins enabling inhibitory synapse formation. This review focuses on attempts to define structural and functional elements within the ICD of GlyRs discussed with the background of protein-protein interactions and functional channel formation in the absence of the TM3–4 loop. KW - posttranslational modifications KW - GlyR receptors KW - synaptic inhibition KW - intracellular domain KW - interaction partners Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-165394 IS - 9 ER - TY - JOUR A1 - Schaefer, Natascha A1 - Signoret-Genest, Jérémy A1 - von Collenberg, Cora R. A1 - Wachter, Britta A1 - Deckert, Jürgen A1 - Tovote, Philip A1 - Blum, Robert A1 - Villmann, Carmen T1 - Anxiety and Startle Phenotypes in Glrb Spastic and Glra1 Spasmodic Mouse Mutants JF - Frontiers in Molecular Neuroscience N2 - A GWAS study recently demonstrated single nucleotide polymorphisms (SNPs) in the human GLRB gene of individuals with a prevalence for agoraphobia. GLRB encodes the glycine receptor (GlyRs) β subunit. The identified SNPs are localized within the gene flanking regions (3′ and 5′ UTRs) and intronic regions. It was suggested that these nucleotide polymorphisms modify GlyRs expression and phenotypic behavior in humans contributing to an anxiety phenotype as a mild form of hyperekplexia. Hyperekplexia is a human neuromotor disorder with massive startle phenotypes due to mutations in genes encoding GlyRs subunits. GLRA1 mutations have been more commonly observed than GLRB mutations. If an anxiety phenotype contributes to the hyperekplexia disease pattern has not been investigated yet. Here, we compared two mouse models harboring either a mutation in the murine Glra1 or Glrb gene with regard to anxiety and startle phenotypes. Homozygous spasmodic animals carrying a Glra1 point mutation (alanine 52 to serine) displayed abnormally enhanced startle responses. Moreover, spasmodic mice exhibited significant changes in fear-related behaviors (freezing, rearing and time spent on back) analyzed during the startle paradigm, even in a neutral context. Spastic mice exhibit reduced expression levels of the full-length GlyRs β subunit due to aberrant splicing of the Glrb gene. Heterozygous animals appear normal without an obvious behavioral phenotype and thus might reflect the human situation analyzed in the GWAS study on agoraphobia and startle. In contrast to spasmodic mice, heterozygous spastic animals revealed no startle phenotype in a neutral as well as a conditioning context. Other mechanisms such as a modulatory function of the GlyRs β subunit within glycinergic circuits in neuronal networks important for fear and fear-related behavior may exist. Possibly, in human additional changes in fear and fear-related circuits either due to gene-gene interactions e.g., with GLRA1 genes or epigenetic factors are necessary to create the agoraphobia and in particular the startle phenotype. KW - glycine receptor KW - spastic KW - fear KW - anxiety KW - startle reaction Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-210041 SN - 1662-5099 VL - 13 IS - 152 ER - TY - JOUR A1 - Piro, Inken A1 - Eckes, Anna-Lena A1 - Kasaragod, Vikram Babu A1 - Sommer, Claudia A1 - Harvey, Robert J. A1 - Schaefer, Natascha A1 - Villmann, Carmen T1 - Novel Functional Properties of Missense Mutations in the Glycine Receptor β Subunit in Startle Disease JF - Frontiers in Molecular Neuroscience N2 - Startle disease is a rare disorder associated with mutations in GLRA1 and GLRB, encoding glycine receptor (GlyR) α1 and β subunits, which enable fast synaptic inhibitory transmission in the spinal cord and brainstem. The GlyR β subunit is important for synaptic localization via interactions with gephyrin and contributes to agonist binding and ion channel conductance. Here, we have studied three GLRB missense mutations, Y252S, S321F, and A455P, identified in startle disease patients. For Y252S in M1 a disrupted stacking interaction with surrounding aromatic residues in M3 and M4 is suggested which is accompanied by an increased EC\(_{50}\) value. By contrast, S321F in M3 might stabilize stacking interactions with aromatic residues in M1 and M4. No significant differences in glycine potency or efficacy were observed for S321F. The A455P variant was not predicted to impact on subunit folding but surprisingly displayed increased maximal currents which were not accompanied by enhanced surface expression, suggesting that A455P is a gain-of-function mutation. All three GlyR β variants are trafficked effectively with the α1 subunit through intracellular compartments and inserted into the cellular membrane. In vivo, the GlyR β subunit is transported together with α1 and the scaffolding protein gephyrin to synaptic sites. The interaction of these proteins was studied using eGFP-gephyrin, forming cytosolic aggregates in non-neuronal cells. eGFP-gephyrin and β subunit co-expression resulted in the recruitment of both wild-type and mutant GlyR β subunits to gephyrin aggregates. However, a significantly lower number of GlyR β aggregates was observed for Y252S, while for mutants S321F and A455P, the area and the perimeter of GlyR β subunit aggregates was increased in comparison to wild-type β. Transfection of hippocampal neurons confirmed differences in GlyR-gephyrin clustering with Y252S and A455P, leading to a significant reduction in GlyR β-positive synapses. Although none of the mutations studied is directly located within the gephyrin-binding motif in the GlyR β M3-M4 loop, we suggest that structural changes within the GlyR β subunit result in differences in GlyR β-gephyrin interactions. Hence, we conclude that loss- or gain-of-function, or alterations in synaptic GlyR clustering may underlie disease pathology in startle disease patients carrying GLRB mutations. KW - glycine receptor KW - hyperekplexia KW - startle disease KW - gephyrin Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-246676 SN - 1662-5099 VL - 14 ER - TY - JOUR A1 - Kitzenmaier, Alexandra A1 - Schaefer, Natascha A1 - Kasaragod, Vikram Babu A1 - Polster, Tilman A1 - Hantschmann, Ralph A1 - Schindelin, Hermann A1 - Villmann, Carmen T1 - The P429L loss of function mutation of the human glycine transporter 2 associated with hyperekplexia JF - European Journal of Neuroscience N2 - Glycine transporter 2 (GlyT2) mutations across the entire sequence have been shown to represent the presynaptic component of the neurological disease hyperekplexia. Dominant, recessive and compound heterozygous mutations have been identified, most of them leading to impaired glycine uptake. Here, we identified a novel loss of function mutation of the GlyT2 resulting from an amino acid exchange of proline 429 to leucine in a family with both parents being heterozygous carriers. A homozygous child suffered from severe neuromotor deficits. We characterised the GlyT2P429L variant at the molecular, cellular and protein level. Functionality was determined by glycine uptake assays. Homology modelling revealed that the mutation localises to α‐helix 5, presumably disrupting the integrity of this α‐helix. GlyT2P429L shows protein trafficking through various intracellular compartments to the cellular surface. However, the protein expression at the whole cell level was significantly reduced. Although present at the cellular surface, GlyT2P429L demonstrated a loss of protein function. Coexpression of the mutant with the wild‐type protein, reflecting the situation in the parents, did not affect transporter function, thus explaining their non‐symptomatic phenotype. Nevertheless, when the mutant was expressed in excess compared with the wild‐type protein, glycine uptake was significantly reduced. Thus, these data demonstrate that the proline residue at position 429 is structurally important for the correct formation of α‐helix 5. The failure in functionality of the mutated GlyT2 is most probably due to structural changes localised in close proximity to the sodium‐binding site of the transporter. KW - glycine transporter 2 KW - glyvine uptake KW - loss of function KW - presynaptic hyperekplexia KW - protein transport KW - structural disruption Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-206158 VL - 50 IS - 12 ER - TY - JOUR A1 - Milanos, Sinem A1 - Elsharif, Shaimaa A. A1 - Janzen, Dieter A1 - Buettner, Andrea A1 - Villmann, Carmen T1 - Metabolic Products of Linalool and Modulation of GABA\(_{A}\) Receptors JF - Frontiers in Chemistry N2 - Terpenoids are major subcomponents in aroma substances which harbor sedative physiological potential. We have demonstrated that various monoterpenoids such as the acyclic linalool enhance GABAergic currents in an allosteric manner in vitro upon overexpression of inhibitory α1β2 GABA\(_{A}\) receptors in various expression systems. However, in plants or humans, i.e., following intake via inhalation or ingestion, linalool undergoes metabolic modifications including oxygenation and acetylation, which may affect the modulatory efficacy of the generated linalool derivatives. Here, we analyzed the modulatory potential of linalool derivatives at α1β2γ2 GABA\(_{A}\) receptors upon transient overexpression. Following receptor expression control, electrophysiological recordings in a whole cell configuration were used to determine the chloride influx upon co-application of GABA EC\(_{10-30}\) together with the modulatory substance. Our results show that only oxygenated linalool metabolites at carbon 8 positively affect GABAergic currents whereas derivatives hydroxylated or carboxylated at carbon 8 were rather ineffective. Acetylated linalool derivatives resulted in non-significant changes of GABAergic currents. We can conclude that metabolism of linalool reduces its positive allosteric potential at GABAA receptors compared to the significant potentiation effects of the parent molecule linalool itself. KW - Cys-loop receptor KW - GABA\(_{A}\) KW - receptor KW - linalool KW - linalyl acetate KW - oxygenation KW - patch-clamp Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170779 VL - 5 IS - 46 ER - TY - JOUR A1 - Breitinger, Ulrike A1 - Bahnassawy, Lamiaa M. A1 - Janzen, Dieter A1 - Römer, Vera A1 - Becker, Cord-Michael A1 - Villmann, Carmen A1 - Breitinger, Hans-Georg T1 - PKA and PKC modulators affect ion channel function and internalization of recombinant alpha1 and alpha1-beta glycine receptors JF - Frontiers in Molecular Neurosience N2 - Glycine receptors (GlyRs) are important mediators of fast inhibitory neurotransmission in the mammalian central nervous system. Their function is controlled by multiple cellular mechanisms, including intracellular regulatory processes. Modulation of GlyR function by protein kinases has been reported for many cell types, involving different techniques, and often yielding contradictory results. Here, we studied the effects of protein kinase C (PKC) and cAMP-dependent protein kinase A (PKA) on glycine induced currents in HEK293 cells expressing human homomeric \(\alpha\)1 and heteromeric \(\alpha\)1-\(\beta\) GlyRs using whole-cell patch clamp techniques as well as internalization assays. In whole-cell patch-clamp measurements, modulators were applied in the intracellular buffer at concentrations between 0.1 \(\mu\)M and 0.5 \(\mu\)M. EC50 of glycine increased upon application of the protein kinase activators Forskolin and phorbol-12-myristate-13-acetate (PMA) but decreased in the presence of the PKC inhibitor Staurosporine aglycon and the PKA inhibitor H-89. Desensitization of recombinant \(\alpha\)1 receptors was significantly increased in the presence of Forskolin. Staurosporine aglycon, on the other hand decreased desensitization of heteromeric \(\alpha\)1-\(\beta\) GlyRs. The time course of receptor activation was determined for homomeric \(\alpha\)1 receptors and revealed two simultaneous effects: cells showed a decrease of EC50 after 3-6 min of establishing whole-cell configuration. This effect was independent of protein kinase modulators. All modulators of PKA and PKC, however, produced an additional shift of EC50, which overlay and eventually exceeded the cells intrinsic variation of EC50. The effect of kinase activators was abolished if the corresponding inhibitors were co-applied, consistent with PKA and PKC directly mediating the modulation of GlyR function. Direct effects of PKA-and PKC-modulators on receptor expression on transfected HEK cells were monitored within 15 min of drug application, showing a significant increase of receptor internalization with PKA and PKC activators, while the corresponding inhibitors had no significant effect on receptor surface expression or internalization. Our results confirm the observation that phosphorylation via PKA and PKC has a direct effect on the GlyR ion channel complex and plays an important role in the fine-tuning of glycinergic signaling. KW - glycine receptor KW - PKA KW - PKC KW - activators/inhibitors of phosphorylation KW - whole-cell currents KW - modulation kinetics KW - receptor internalization Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-220401 VL - 11 ER -