TY - JOUR A1 - Li, Shushan A1 - Stöckl, Sabine A1 - Lukas, Christoph A1 - Herrmann, Marietta A1 - Brochhausen, Christoph A1 - König, Matthias A. A1 - Johnstone, Brian A1 - Grässel, Susanne T1 - Curcumin-primed human BMSC-derived extracellular vesicles reverse IL-1β-induced catabolic responses of OA chondrocytes by upregulating miR-126-3p JF - Stem Cell Research & Therapy N2 - Background Curcumin has anti-inflammatory effects and qualifies as a potential candidate for the treatment of osteoarthritis (OA). However, curcumin has limited bioavailability. Extracellular vesicles (EVs) are released by multiple cell types and act as molecule carrier during intercellular communication. We assume that EVs can maintain bioavailability and stability of curcumin after encapsulation. Here, we evaluated modulatory effects of curcumin-primed human (h)BMSC-derived EVs (Cur-EVs) on IL-1β stimulated human osteoarthritic chondrocytes (OA-CH). Methods CellTiter-Blue Viability- (CTB), Caspase 3/7-, and live/dead assays were used to determine range of cytotoxic curcumin concentrations for hBMSC and OA-CH. Cur-EVs and control EVs were harvested from cell culture supernatants of hBMSC by ultracentrifugation. Western blotting (WB), transmission electron microscopy, and nanoparticle tracking analysis were performed to characterize the EVs. The intracellular incorporation of EVs derived from PHK26 labeled and curcumin-primed or control hBMSC was tested by adding the labeled EVs to OA-CH cultures. OA-CH were pre-stimulated with IL-1β, followed by Cur-EV and control EV treatment for 24 h and subsequent analysis of viability, apoptosis, and migration (scratch assay). Relative expression of selected anabolic and catabolic genes was assessed with qRT-PCR. Furthermore, WB was performed to evaluate phosphorylation of Erk1/2, PI3K/Akt, and p38MAPK in OA-CH. The effect of hsa-miR-126-3p expression on IL-1β-induced OA-CH was determined using CTB-, Caspase 3/7-, live/dead assays, and WB. Results Cur-EVs promoted viability and reduced apoptosis of IL-1β-stimulated OA-CH and attenuated IL-1β-induced inhibition of migration. Furthermore, Cur-EVs increased gene expression of BCL2, ACAN, SOX9, and COL2A1 and decreased gene expression of IL1B, IL6, MMP13, and COL10A1 in IL-1β-stimulated OA-CH. In addition, phosphorylation of Erk1/2, PI3K/Akt, and p38 MAPK, induced by IL-1β, is prevented by Cur-EVs. Cur-EVs increased IL-1β-reduced expression of hsa-miR-126-3p and hsa-miR-126-3p mimic reversed the effects of IL-1β. Conclusion Cur-EVs alleviated IL-1β-induced catabolic effects on OA-CH by promoting viability and migration, reducing apoptosis and phosphorylation of Erk1/2, PI3K/Akt, and p38 MAPK thereby modulating pro-inflammatory signaling pathways. Treatment of OA-CH with Cur-EVs is followed by upregulation of expression of hsa-miR-126-3p which is involved in modulation of anabolic response of OA-CH. EVs may be considered as promising drug delivery vehicles of curcumin helping to alleviate OA. KW - BMSC KW - curcumin KW - extracellular vesicles KW - IL-1β KW - osteoarthritis KW - pro-inflammatory signaling pathways KW - chondrocytes Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-364237 VL - 12 ER - TY - JOUR A1 - Niedermair, Tanja A1 - Lukas, Christoph A1 - Li, Shushan A1 - Stöckl, Sabine A1 - Craiovan, Benjamin A1 - Brochhausen, Christoph A1 - Federlin, Marianne A1 - Herrmann, Marietta A1 - Grässel, Susanne T1 - Influence of Extracellular Vesicles Isolated From Osteoblasts of Patients With Cox-Arthrosis and/or Osteoporosis on Metabolism and Osteogenic Differentiation of BMSCs JF - Frontiers in Bioengineering and Biotechnology N2 - Background: Studies with extracellular vesicles (EVs), including exosomes, isolated from mesenchymal stem cells (MSC) indicate benefits for the treatment of musculoskeletal pathologies as osteoarthritis (OA) and osteoporosis (OP). However, little is known about intercellular effects of EVs derived from pathologically altered cells that might influence the outcome by counteracting effects from “healthy” MSC derived EVs. We hypothesize, that EVs isolated from osteoblasts of patients with hip OA (coxarthrosis/CA), osteoporosis (OP), or a combination of both (CA/OP) might negatively affect metabolism and osteogenic differentiation of bone-marrow derived (B)MSCs. Methods: Osteoblasts, isolated from bone explants of CA, OP, and CA/OP patients, were compared regarding growth, viability, and osteogenic differentiation capacity. Structural features of bone explants were analyzed via μCT. EVs were isolated from supernatant of naïve BMSCs and CA, OP, and CA/OP osteoblasts (osteogenic culture for 35 days). BMSC cultures were stimulated with EVs and subsequently, cell metabolism, osteogenic marker gene expression, and osteogenic differentiation were analyzed. Results: Trabecular bone structure was different between the three groups with lowest number and highest separation in the CA/OP group. Viability and Alizarin red staining increased over culture time in CA/OP osteoblasts whereas growth of osteoblasts was comparable. Alizarin red staining was by trend higher in CA compared to OP osteoblasts after 35 days and ALP activity was higher after 28 and 35 days. Stimulation of BMSC cultures with CA, OP, and CA/OP EVs did not affect proliferation but increased caspase 3/7-activity compared to unstimulated BMSCs. BMSC viability was reduced after stimulation with CA and CA/OP EVs compared to unstimulated BMSCs or stimulation with OP EVs. ALP gene expression and activity were reduced in BMSCs after stimulation with CA, OP, and CA/OP EVs. Stimulation of BMSCs with CA EVs reduced Alizarin Red staining by trend. Conclusion: Stimulation of BMSCs with EVs isolated from CA, OP, and CA/OP osteoblasts had mostly catabolic effects on cell metabolism and osteogenic differentiation irrespective of donor pathology and reflect the impact of tissue microenvironment on cell metabolism. These catabolic effects are important for understanding differences in effects of EVs on target tissues/cells when harnessing them as therapeutic drugs. KW - extracellular vesicles KW - mesenchymal stem cells KW - osteoblasts KW - osteoarthritis KW - osteoporosis KW - EVs KW - osteogenic differentiation Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-219902 SN - 2296-4185 VL - 8 ER -