TY - JOUR A1 - Freitag‐Wolf, Sandra A1 - Munz, Matthias A1 - Junge, Olaf A1 - Graetz, Christian A1 - Jockel‐Schneider, Yvonne A1 - Staufenbiel, Ingmar A1 - Bruckmann, Corinna A1 - Lieb, Wolfgang A1 - Franke, Andre A1 - Loos, Bruno G. A1 - Jepsen, Søren A1 - Dommisch, Henrik A1 - Schaefer, Arne S. T1 - Sex‐specific genetic factors affect the risk of early‐onset periodontitis in Europeans JF - Journal of Clinical Periodontology N2 - Aims Various studies have reported that young European women are more likely to develop early‐onset periodontitis compared to men. A potential explanation for the observed variations in sex and age of disease onset is the natural genetic variation within the autosomal genomes. We hypothesized that genotype‐by‐sex (G × S) interactions contribute to the increased prevalence and severity. Materials and methods Using the case‐only design, we tested for differences in genetic effects between men and women in 896 North‐West European early‐onset cases, using imputed genotypes from the OmniExpress genotyping array. Population‐representative 6823 controls were used to verify that the interacting variables G and S were uncorrelated in the general population. Results In total, 20 loci indicated G × S associations (P < 0.0005), 3 of which were previously suggested as risk genes for periodontitis (ABLIM2, CDH13, and NELL1). We also found independent G × S interactions of the related gene paralogs MACROD1/FLRT1 (chr11) and MACROD2/FLRT3 (chr20). G × S‐associated SNPs at CPEB4, CDH13, MACROD1, and MECOM were genome‐wide‐associated with heel bone mineral density (CPEB4, MECOM), waist‐to‐hip ratio (CPEB4, MACROD1), and blood pressure (CPEB4, CDH13). Conclusions Our results indicate that natural genetic variation affects the different heritability of periodontitis among sexes and suggest genes that contribute to inter‐sex phenotypic variation in early‐onset periodontitis. KW - alveolar bone loss KW - gene × sex interaction KW - genetic risk KW - heritability KW - inflammation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-262445 VL - 48 IS - 11 SP - 1404 EP - 1413 ER - TY - JOUR A1 - Richter, Gesa M. A1 - Kruppa, Jochen A1 - Munz, Matthias A1 - Wiehe, Ricarda A1 - Häsler, Robert A1 - Franke, Andre A1 - Martins, Orlando A1 - Jockel-Schneider, Yvonne A1 - Bruckmann, Corinna A1 - Dommisch, Henrik A1 - Schaefer, Arne S. T1 - A combined epigenome- and transcriptome-wide association study of the oral masticatory mucosa assigns CYP1B1 a central role for epithelial health in smokers JF - Clinical Epigenetics N2 - Background The oral mucosa has an important role in maintaining barrier integrity at the gateway to the gastrointestinal and respiratory tracts. Smoking is a strong environmental risk factor for the common oral inflammatory disease periodontitis and oral cancer. Cigarette smoke affects gene methylation and expression in various tissues. This is the first epigenome-wide association study (EWAS) that aimed to identify biologically active methylation marks of the oral masticatory mucosa that are associated with smoking. Results Ex vivo biopsies of 18 current smokers and 21 never smokers were analysed with the Infinium Methylation EPICBeadChip and combined with whole transcriptome RNA sequencing (RNA-Seq; 16 mio reads per sample) of the same samples. We analysed the associations of CpG methylation values with cigarette smoking and smoke pack year (SPY) levels in an analysis of covariance (ANCOVA). Nine CpGs were significantly associated with smoking status, with three CpGs mapping to the genetic region of CYP1B1 (cytochrome P450 family 1 subfamily B member 1;best p=5.5x10(-8)) and two mapping to AHRR (aryl-hydrocarbon receptor repressor; best p=5.9x10(-9)). In the SPY analysis, 61 CpG sites at 52 loci showed significant associations of the quantity of smoking with changes in methylation values. Here, the most significant association located to the gene CYP1B1, with p=4.0x10(-10). RNA-Seq data showed significantly increased expression of CYP1B1 in smokers compared to non-smokers (p=2.2x10(-14)), together with 13 significantly upregulated transcripts. Six transcripts were significantly downregulated. No differential expression was observed for AHRR. In vitro studies with gingival fibroblasts showed that cigarette smoke extract directly upregulated the expression of CYP1B1. Conclusion This study validated the established role of CYP1B1 and AHRR in xenobiotic metabolism of tobacco smoke and highlights the importance of epigenetic regulation for these genes. For the first time, we give evidence of this role for the oral masticatory mucosa. KW - EWAS KW - Methylation KW - Expression KW - Masticatory mucosa KW - CYP1B1 KW - AHRR KW - Cytochrome P 450 pathway KW - OSCC KW - Smoking Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-226175 VL - 11 ER -