TY - JOUR A1 - Schmidt, Thomas S. B. A1 - Hayward, Matthew R. A1 - Coelho, Luiis P. A1 - Li, Simone S. A1 - Costea, Paul I. A1 - Voigt, Anita Y. A1 - Wirbel, Jakob A1 - Maistrenko, Oleksandr M. A1 - Alves, Renato J. C. A1 - Bergsten, Emma A1 - de Beaufort, Carine A1 - Sobhani, Iradj A1 - Heintz-Buschart, Anna A1 - Sunagawa, Shinichi A1 - Zeller, Georg A1 - Wilmes, Paul A1 - Bork, Peer T1 - Extensive transmission of microbes along the gastrointestinal tract JF - eLife N2 - The gastrointestinal tract is abundantly colonized by microbes, yet the translocation of oral species to the intestine is considered a rare aberrant event, and a hallmark of disease. By studying salivary and fecal microbial strain populations of 310 species in 470 individuals from five countries, we found that transmission to, and subsequent colonization of, the large intestine by oral microbes is common and extensive among healthy individuals. We found evidence for a vast majority of oral species to be transferable, with increased levels of transmission in colorectal cancer and rheumatoid arthritis patients and, more generally, for species described as opportunistic pathogens. This establishes the oral cavity as an endogenous reservoir for gut microbial strains, and oral-fecal transmission as an important process that shapes the gastrointestinal microbiome in health and disease. KW - Colonization KW - Annotation KW - Dynamics KW - Accurate KW - Strains KW - Barrier KW - Health KW - Acids KW - Research Article KW - Computational and Systems Biology KW - Microbiology and Infectious Disease KW - microbiome KW - gastrointestinal tract KW - colorectal cancer KW - rheumatoid arthritis KW - metagenomics Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-228954 VL - 8 ER - TY - JOUR A1 - Costea, Paul I. A1 - Coelho, Louis Pedro A1 - Sunagawa, Shinichi A1 - Munch, Robin A1 - Huerta-Cepas, Jaime A1 - Forslund, Kristoffer A1 - Hildebrand, Falk A1 - Kushugulova, Almagul A1 - Zeller, Georg A1 - Bork, Peer T1 - Subspecies in the global human gut microbiome JF - Molecular Systems Biology N2 - Population genomics of prokaryotes has been studied in depth in only a small number of primarily pathogenic bacteria, as genome sequences of isolates of diverse origin are lacking for most species. Here, we conducted a large‐scale survey of population structure in prevalent human gut microbial species, sampled from their natural environment, with a culture‐independent metagenomic approach. We examined the variation landscape of 71 species in 2,144 human fecal metagenomes and found that in 44 of these, accounting for 72% of the total assigned microbial abundance, single‐nucleotide variation clearly indicates the existence of sub‐populations (here termed subspecies). A single subspecies (per species) usually dominates within each host, as expected from ecological theory. At the global scale, geographic distributions of subspecies differ between phyla, with Firmicutes subspecies being significantly more geographically restricted. To investigate the functional significance of the delineated subspecies, we identified genes that consistently distinguish them in a manner that is independent of reference genomes. We further associated these subspecies‐specific genes with properties of the microbial community and the host. For example, two of the three Eubacterium rectale subspecies consistently harbor an accessory pro‐inflammatory flagellum operon that is associated with lower gut community diversity, higher host BMI, and higher blood fasting insulin levels. Using an additional 676 human oral samples, we further demonstrate the existence of niche specialized subspecies in the different parts of the oral cavity. Taken together, we provide evidence for subspecies in the majority of abundant gut prokaryotes, leading to a better functional and ecological understanding of the human gut microbiome in conjunction with its host. KW - biology KW - genetic variation KW - metagenomics KW - microbiome KW - population structure KW - prokaryotic subspecies Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-172674 VL - 13 IS - 12 ER - TY - JOUR A1 - Milanese, Alessio A1 - Mende, Daniel R A1 - Paoli, Lucas A1 - Salazar, Guillem A1 - Ruscheweyh, Hans-Joachim A1 - Cuenca, Miguelangel A1 - Hingamp, Pascal A1 - Alves, Renato A1 - Costea, Paul I A1 - Coelho, Luis Pedro A1 - Schmidt, Thomas S. B. A1 - Almeida, Alexandre A1 - Mitchell, Alex L A1 - Finn, Robert D. A1 - Huerta-Cepas, Jaime A1 - Bork, Peer A1 - Zeller, Georg A1 - Sunagawa, Shinichi T1 - Microbial abundance, activity and population genomic profiling with mOTUs2 JF - Nature Communications N2 - Metagenomic sequencing has greatly improved our ability to profile the composition of environmental and host-associated microbial communities. However, the dependency of most methods on reference genomes, which are currently unavailable for a substantial fraction of microbial species, introduces estimation biases. We present an updated and functionally extended tool based on universal (i.e., reference-independent), phylogenetic marker gene (MG)-based operational taxonomic units (mOTUs) enabling the profiling of >7700 microbial species. As more than 30% of them could not previously be quantified at this taxonomic resolution, relative abundance estimates based on mOTUs are more accurate compared to other methods. As a new feature, we show that mOTUs, which are based on essential housekeeping genes, are demonstrably well-suited for quantification of basal transcriptional activity of community members. Furthermore, single nucleotide variation profiles estimated using mOTUs reflect those from whole genomes, which allows for comparing microbial strain populations (e.g., across different human body sites). KW - microbiome KW - software Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-224089 VL - 10 ER -