TY - JOUR A1 - Stein, Katharina A1 - Coulibaly, Drissa A1 - Balima, Larba Hubert A1 - Goetze, Dethardt A1 - Linsenmair, Karl Eduard A1 - Porembski, Stefan A1 - Stenchly, Kathrin A1 - Theodorou, Panagiotis T1 - Plant-pollinator networks in savannas of Burkina Faso, West Africa JF - Diversity N2 - West African savannas are severely threatened with intensified land use and increasing degradation. Bees are important for terrestrial biodiversity as they provide native plant species with pollination services. However, little information is available regarding their mutualistic interactions with woody plant species. In the first network study from sub-Saharan West Africa, we investigated the effects of land-use intensity and climatic seasonality on plant–bee communities and their interaction networks. In total, we recorded 5686 interactions between 53 flowering woody plant species and 100 bee species. Bee-species richness and the number of interactions were higher in the low compared to medium and high land-use intensity sites. Bee- and plant-species richness and the number of interactions were higher in the dry compared to the rainy season. Plant–bee visitation networks were not strongly affected by land-use intensity; however, climatic seasonality had a strong effect on network architecture. Null-model corrected connectance and nestedness were higher in the dry compared to the rainy season. In addition, network specialization and null-model corrected modularity were lower in the dry compared to the rainy season. Our results suggest that in our study region, seasonal effects on mutualistic network architecture are more pronounced compared to land-use change effects. Nonetheless, the decrease in bee-species richness and the number of plant–bee interactions with an increase in land-use intensity highlights the importance of savanna conservation for maintaining bee diversity and the concomitant provision of ecosystem services. KW - bees KW - community composition KW - connectance KW - land-use intensity KW - modularity KW - mutualism KW - number of interactions KW - seasonality KW - woody plant richness Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-220157 SN - 1424-2818 VL - 13 IS - 1 ER - TY - JOUR A1 - Stein, Katharina A1 - Coulibaly, Drissa A1 - Stenchly, Kathrin A1 - Goetze, Dethardt A1 - Porembski, Stefan A1 - Lindner, André A1 - Konaté, Souleymane A1 - Linsenmair, Eduard K. T1 - Bee pollination increases yield quantity and quality of cash crops in Burkina Faso, West Africa JF - Scientific Reports N2 - Mutualistic biotic interactions as among flowering plants and their animal pollinators are a key component of biodiversity. Pollination, especially by insects, is a key element in ecosystem functioning, and hence constitutes an ecosystem service of global importance. Not only sexual reproduction of plants is ensured, but also yields are stabilized and genetic variability of crops is maintained, counteracting inbreeding depression and facilitating system resilience. While experiencing rapid environmental change, there is an increased demand for food and income security, especially in sub-Saharan communities, which are highly dependent on small scale agriculture. By combining exclusion experiments, pollinator surveys and field manipulations, this study for the first time quantifies the contribution of bee pollinators to smallholders’ production of the major cash crops, cotton and sesame, in Burkina Faso. Pollination by honeybees and wild bees significantly increased yield quantity and quality on average up to 62%, while exclusion of pollinators caused an average yield gap of 37% in cotton and 59% in sesame. Self-pollination revealed inbreeding depression effects on fruit set and low germination rates in the F1-generation. Our results highlight potential negative consequences of any pollinator decline, provoking risks to agriculture and compromising crop yields in sub-Saharan West Africa. KW - bees KW - pollination KW - Burkina Faso KW - cash crops KW - cotton KW - sesame Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-169914 VL - 7 IS - 17691 ER - TY - JOUR A1 - Stein, Katharina A1 - Stenchly, Kathrin A1 - Coulibaly, Drissa A1 - Pauly, Alain A1 - Dimobe, Kangbeni A1 - Steffan-Dewenter, Ingolf A1 - Konaté, Souleymane A1 - Goetze, Dethardt A1 - Porembski, Stefan A1 - Linsenmair, K. Eduard T1 - Impact of human disturbance on bee pollinator communities in savanna and agricultural sites in Burkina Faso, West Africa JF - Ecology and Evolution N2 - All over the world, pollinators are threatened by land-use change involving degradation of seminatural habitats or conversion into agricultural land. Such disturbance often leads to lowered pollinator abundance and/or diversity, which might reduce crop yield in adjacent agricultural areas. For West Africa, changes in bee communities across disturbance gradients from savanna to agricultural land are mainly unknown. In this study, we monitored for the impact of human disturbance on bee communities in savanna and crop fields. We chose three savanna areas of varying disturbance intensity (low, medium, and high) in the South Sudanian zone of Burkina Faso, based on land-use/land cover data via Landsat images, and selected nearby cotton and sesame fields. During 21 months covering two rainy and two dry seasons in 2014 and 2015, we captured bees using pan traps. Spatial and temporal patterns of bee species abundance, richness, evenness and community structure were assessed. In total, 35,469 bee specimens were caught on 12 savanna sites and 22 fields, comprising 97 species of 32 genera. Bee abundance was highest at intermediate disturbance in the rainy season. Species richness and evenness did not differ significantly. Bee communities at medium and highly disturbed savanna sites comprised only subsets of those at low disturbed sites. An across-habitat spillover of bees (mostly abundant social bee species) from savanna into crop fields was observed during the rainy season when crops are mass-flowering, whereas most savanna plants are not in bloom. Despite disturbance intensification, our findings suggest that wild bee communities can persist in anthropogenic landscapes and that some species even benefitted disproportionally. West African areas of crop production such as for cotton and sesame may serve as important food resources for bee species in times when resources in the savanna are scarce and receive at the same time considerable pollination service. KW - bee communities KW - cotton KW - sesame KW - species spillover KW - sub-Saharan Africa Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-239999 VL - 8 ER -