TY - GEN A1 - Dandekar, Thomas A1 - Dandekar, G. T1 - Schlange als Attribut des Äskulap N2 - No abstract available Y1 - 1994 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-29822 ER - TY - JOUR A1 - Kaltdorf, Martin A1 - Breitenbach, Tim A1 - Karl, Stefan A1 - Fuchs, Maximilian A1 - Kessie, David Komla A1 - Psota, Eric A1 - Prelog, Martina A1 - Sarukhanyan, Edita A1 - Ebert, Regina A1 - Jakob, Franz A1 - Dandekar, Gudrun A1 - Naseem, Muhammad A1 - Liang, Chunguang A1 - Dandekar, Thomas T1 - Software JimenaE allows efficient dynamic simulations of Boolean networks, centrality and system state analysis JF - Scientific Reports N2 - The signal modelling framework JimenaE simulates dynamically Boolean networks. In contrast to SQUAD, there is systematic and not just heuristic calculation of all system states. These specific features are not present in CellNetAnalyzer and BoolNet. JimenaE is an expert extension of Jimena, with new optimized code, network conversion into different formats, rapid convergence both for system state calculation as well as for all three network centralities. It allows higher accuracy in determining network states and allows to dissect networks and identification of network control type and amount for each protein with high accuracy. Biological examples demonstrate this: (i) High plasticity of mesenchymal stromal cells for differentiation into chondrocytes, osteoblasts and adipocytes and differentiation-specific network control focusses on wnt-, TGF-beta and PPAR-gamma signaling. JimenaE allows to study individual proteins, removal or adding interactions (or autocrine loops) and accurately quantifies effects as well as number of system states. (ii) Dynamical modelling of cell–cell interactions of plant Arapidopsis thaliana against Pseudomonas syringae DC3000: We analyze for the first time the pathogen perspective and its interaction with the host. We next provide a detailed analysis on how plant hormonal regulation stimulates specific proteins and who and which protein has which type and amount of network control including a detailed heatmap of the A.thaliana response distinguishing between two states of the immune response. (iii) In an immune response network of dendritic cells confronted with Aspergillus fumigatus, JimenaE calculates now accurately the specific values for centralities and protein-specific network control including chemokine and pattern recognition receptors. KW - cellular signalling networks KW - computer modelling Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-313303 VL - 13 ER - TY - JOUR A1 - Baur, Florentin A1 - Nietzer, Sarah L. A1 - Kunz, Meik A1 - Saal, Fabian A1 - Jeromin, Julian A1 - Matschos, Stephanie A1 - Linnebacher, Michael A1 - Walles, Heike A1 - Dandekar, Thomas A1 - Dandekar, Gudrun T1 - Connecting cancer pathways to tumor engines: a stratification tool for colorectal cancer combining human in vitro tissue models with boolean in silico models JF - Cancers N2 - To improve and focus preclinical testing, we combine tumor models based on a decellularized tissue matrix with bioinformatics to stratify tumors according to stage-specific mutations that are linked to central cancer pathways. We generated tissue models with BRAF-mutant colorectal cancer (CRC) cells (HROC24 and HROC87) and compared treatment responses to two-dimensional (2D) cultures and xenografts. As the BRAF inhibitor vemurafenib is—in contrast to melanoma—not effective in CRC, we combined it with the EGFR inhibitor gefitinib. In general, our 3D models showed higher chemoresistance and in contrast to 2D a more active HGFR after gefitinib and combination-therapy. In xenograft models murine HGF could not activate the human HGFR, stressing the importance of the human microenvironment. In order to stratify patient groups for targeted treatment options in CRC, an in silico topology with different stages including mutations and changes in common signaling pathways was developed. We applied the established topology for in silico simulations to predict new therapeutic options for BRAF-mutated CRC patients in advanced stages. Our in silico tool connects genome information with a deeper understanding of tumor engines in clinically relevant signaling networks which goes beyond the consideration of single drivers to improve CRC patient stratification. KW - in silico simulation KW - 3D tissue models KW - colorectal cancer KW - BRAF mutation KW - targeted therapy KW - stratification Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-193798 SN - 2072-6694 VL - 12 IS - 1 ER - TY - JOUR A1 - Kühnemundt, Johanna A1 - Leifeld, Heidi A1 - Scherg, Florian A1 - Schmitt, Matthias A1 - Nelke, Lena C. A1 - Schmitt, Tina A1 - Bauer, Florentin A1 - Göttlich, Claudia A1 - Fuchs, Maximilian A1 - Kunz, Meik A1 - Peindl, Matthias A1 - Brähler, Caroline A1 - Kronenthaler, Corinna A1 - Wischhusen, Jörg A1 - Prelog, Martina A1 - Walles, Heike A1 - Dandekar, Thomas A1 - Dandekar, Gudrun A1 - Nietzer, Sarah L. T1 - Modular micro-physiological human tumor/tissue models based on decellularized tissue for improved preclinical testing JF - ALTEX N2 - High attrition-rates entailed by drug testing in 2D cell culture and animal models stress the need for improved modeling of human tumor tissues. In previous studies our 3D models on a decellularized tissue matrix have shown better predictivity and higher chemoresistance. A single porcine intestine yields material for 150 3D models of breast, lung, colorectal cancer (CRC) or leukemia. The uniquely preserved structure of the basement membrane enables physiological anchorage of endothelial cells and epithelial-derived carcinoma cells. The matrix provides different niches for cell growth: on top as monolayer, in crypts as aggregates and within deeper layers. Dynamic culture in bioreactors enhances cell growth. Comparing gene expression between 2D and 3D cultures, we observed changes related to proliferation, apoptosis and stemness. For drug target predictions, we utilize tumor-specific sequencing data in our in silico model finding an additive effect of metformin and gefitinib treatment for lung cancer in silico, validated in vitro. To analyze mode-of-action, immune therapies such as trispecific T-cell engagers in leukemia, as well as toxicity on non-cancer cells, the model can be modularly enriched with human endothelial cells (hECs), immune cells and fibroblasts. Upon addition of hECs, transmigration of immune cells through the endothelial barrier can be investigated. In an allogenic CRC model we observe a lower basic apoptosis rate after applying PBMCs in 3D compared to 2D, which offers new options to mirror antigen-specific immunotherapies in vitro. In conclusion, we present modular human 3D tumor models with tissue-like features for preclinical testing to reduce animal experiments. KW - modular tumor tissue models KW - invasiveness KW - bioreactor culture KW - combinatorial drug predictions KW - immunotherapies Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-231465 VL - 38 ER - TY - JOUR A1 - Kunz, Meik A1 - Göttlich, Claudia A1 - Walles, Thorsten A1 - Nietzer, Sarah A1 - Dandekar, Gudrun A1 - Dandekar, Thomas T1 - MicroRNA-21 versus microRNA-34: Lung cancer promoting and inhibitory microRNAs analysed in silico and in vitro and their clinical impact JF - Tumor Biology N2 - MicroRNAs are well-known strong RNA regulators modulating whole functional units in complex signaling networks. Regarding clinical application, they have potential as biomarkers for prognosis, diagnosis, and therapy. In this review, we focus on two microRNAs centrally involved in lung cancer progression. MicroRNA-21 promotes and microRNA-34 inhibits cancer progression. We elucidate here involved pathways and imbed these antagonistic microRNAs in a network of interactions, stressing their cancer microRNA biology, followed by experimental and bioinformatics analysis of such microRNAs and their targets. This background is then illuminated from a clinical perspective on microRNA-21 and microRNA-34 as general examples for the complex microRNA biology in lung cancer and its diagnostic value. Moreover, we discuss the immense potential that microRNAs such as microRNA-21 and microRNA-34 imply by their broad regulatory effects. These should be explored for novel therapeutic strategies in the clinic. KW - biomarker KW - microRNA–target interaction KW - microRNAs KW - lung cancer KW - therapeutic strategy KW - bioinformatics Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-158399 VL - 39 IS - 7 ER - TY - JOUR A1 - Peindl, Matthias A1 - Göttlich, Claudia A1 - Crouch, Samantha A1 - Hoff, Niklas A1 - Lüttgens, Tamara A1 - Schmitt, Franziska A1 - Pereira, Jesús Guillermo Nieves A1 - May, Celina A1 - Schliermann, Anna A1 - Kronenthaler, Corinna A1 - Cheufou, Danjouma A1 - Reu-Hofer, Simone A1 - Rosenwald, Andreas A1 - Weigl, Elena A1 - Walles, Thorsten A1 - Schüler, Julia A1 - Dandekar, Thomas A1 - Nietzer, Sarah A1 - Dandekar, Gudrun T1 - EMT, stemness, and drug resistance in biological context: a 3D tumor tissue/in silico platform for analysis of combinatorial treatment in NSCLC with aggressive KRAS-biomarker signatures JF - Cancers N2 - Epithelial-to-mesenchymal transition (EMT) is discussed to be centrally involved in invasion, stemness, and drug resistance. Experimental models to evaluate this process in its biological complexity are limited. To shed light on EMT impact and test drug response more reliably, we use a lung tumor test system based on a decellularized intestinal matrix showing more in vivo-like proliferation levels and enhanced expression of clinical markers and carcinogenesis-related genes. In our models, we found evidence for a correlation of EMT with drug resistance in primary and secondary resistant cells harboring KRAS\(^{G12C}\) or EGFR mutations, which was simulated in silico based on an optimized signaling network topology. Notably, drug resistance did not correlate with EMT status in KRAS-mutated patient-derived xenograft (PDX) cell lines, and drug efficacy was not affected by EMT induction via TGF-β. To investigate further determinants of drug response, we tested several drugs in combination with a KRAS\(^{G12C}\) inhibitor in KRAS\(^{G12C}\) mutant HCC44 models, which, besides EMT, display mutations in P53, LKB1, KEAP1, and high c-MYC expression. We identified an aurora-kinase A (AURKA) inhibitor as the most promising candidate. In our network, AURKA is a centrally linked hub to EMT, proliferation, apoptosis, LKB1, and c-MYC. This exemplifies our systemic analysis approach for clinical translation of biomarker signatures. KW - EMT KW - drug resistance KW - invasion KW - stemness KW - 3D lung tumor tissue models KW - KRAS biomarker signatures KW - boolean in silico models KW - targeted combination therapy Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-270744 SN - 2072-6694 VL - 14 IS - 9 ER - TY - JOUR A1 - Merget, Benjamin A1 - Koetschan, Christian A1 - Hackl, Thomas A1 - Förster, Frank A1 - Dandekar, Thomas A1 - Müller, Tobias A1 - Schultz, Jörg A1 - Wolf, Matthias T1 - The ITS2 Database JF - Journal of Visual Expression N2 - The internal transcribed spacer 2 (ITS2) has been used as a phylogenetic marker for more than two decades. As ITS2 research mainly focused on the very variable ITS2 sequence, it confined this marker to low-level phylogenetics only. However, the combination of the ITS2 sequence and its highly conserved secondary structure improves the phylogenetic resolution1 and allows phylogenetic inference at multiple taxonomic ranks, including species delimitation. The ITS2 Database presents an exhaustive dataset of internal transcribed spacer 2 sequences from NCBI GenBank accurately reannotated. Following an annotation by profile Hidden Markov Models (HMMs), the secondary structure of each sequence is predicted. First, it is tested whether a minimum energy based fold (direct fold) results in a correct, four helix conformation. If this is not the case, the structure is predicted by homology modeling. In homology modeling, an already known secondary structure is transferred to another ITS2 sequence, whose secondary structure was not able to fold correctly in a direct fold. The ITS2 Database is not only a database for storage and retrieval of ITS2 sequence-structures. It also provides several tools to process your own ITS2 sequences, including annotation, structural prediction, motif detection and BLAST search on the combined sequence-structure information. Moreover, it integrates trimmed versions of 4SALE and ProfDistS for multiple sequence-structure alignment calculation and Neighbor Joining tree reconstruction. Together they form a coherent analysis pipeline from an initial set of sequences to a phylogeny based on sequence and secondary structure. In a nutshell, this workbench simplifies first phylogenetic analyses to only a few mouse-clicks, while additionally providing tools and data for comprehensive large-scale analyses. KW - homology modeling KW - molecular systematics KW - internal transcribed spacer 2 KW - alignment KW - genetics KW - secondary structure KW - ribosomal RNA KW - phylogenetic tree KW - phylogeny Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-124600 VL - 61 IS - e3806 ER - TY - JOUR A1 - Kern, Selina A1 - Agarwal, Shruti A1 - Huber, Kilian A1 - Gehring, Andre P. A1 - Strödke, Benjamin A1 - Wirth, Christine C. A1 - Brügl, Thomas A1 - Abodo, Liane Onambele A1 - Dandekar, Thomas A1 - Doerig, Christian A1 - Fischer, Rainer A1 - Tobin, Andrew B. A1 - Alam, Mahmood M. A1 - Bracher, Franz A1 - Pradel, Gabriele T1 - Inhibition of the SR Protein-Phosphorylating CLK Kinases of Plasmodium falciparum Impairs Blood Stage Replication and Malaria Transmission JF - PLOS ONE N2 - Cyclin-dependent kinase-like kinases (CLKs) are dual specificity protein kinases that phosphorylate Serine/Arginine-rich (SR) proteins involved in pre-mRNA processing. Four CLKs, termed PfCLK-1-4, can be identified in the human malaria parasite Plasmodium falciparum, which show homology with the yeast SR protein kinase Sky1p. The four PfCLKs are present in the nucleus and cytoplasm of the asexual blood stages and of gametocytes, sexual precursor cells crucial for malaria parasite transmission from humans to mosquitoes. We identified three plasmodial SR proteins, PfSRSF12, PfSFRS4 and PfSF-1, which are predominantly present in the nucleus of blood stage trophozoites, PfSRSF12 and PfSF-1 are further detectable in the nucleus of gametocytes. We found that recombinantly expressed SR proteins comprising the Arginine/Serine (RS)-rich domains were phosphorylated by the four PfCLKs in in vitro kinase assays, while a recombinant PfSF-1 peptide lacking the RS-rich domain was not phosphorylated. Since it was hitherto not possible to knock-out the pfclk genes by conventional gene disruption, we aimed at chemical knock-outs for phenotype analysis. We identified five human CLK inhibitors, belonging to the oxo-beta-carbolines and aminopyrimidines, as well as the antiseptic chlorhexidine as PfCLK-targeting compounds. The six inhibitors block P. falciparum blood stage replication in the low micromolar to nanomolar range by preventing the trophozoite-to-schizont transformation. In addition, the inhibitors impair gametocyte maturation and gametogenesis in in vitro assays. The combined data show that the four PfCLKs are involved in phosphorylation of SR proteins with essential functions for the blood and sexual stages of the malaria parasite, thus pointing to the kinases as promising targets for antimalarial and transmission blocking drugs. KW - parasite KW - expression KW - mosquito KW - splicing factors KW - lactate dehydrogenase KW - xanthurenic acid KW - in-vitro KW - RNA-SEQ KW - identification KW - culture Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-115405 SN - 1932-6203 VL - 9 IS - 9 ER - TY - JOUR A1 - Stelzner, Kathrin A1 - Winkler, Ann-Cathrin A1 - Liang, Chunguang A1 - Boyny, Aziza A1 - Ade, Carsten P. A1 - Dandekar, Thomas A1 - Fraunholz, Martin J. A1 - Rudel, Thomas T1 - Intracellular Staphylococcus aureus Perturbs the Host Cell Ca\(^{2+}\) Homeostasis To Promote Cell Death JF - mBio N2 - The opportunistic human pathogen Staphylococcus aureus causes serious infectious diseases that range from superficial skin and soft tissue infections to necrotizing pneumonia and sepsis. While classically regarded as an extracellular pathogen, S. aureus is able to invade and survive within human cells. Host cell exit is associated with cell death, tissue destruction, and the spread of infection. The exact molecular mechanism employed by S. aureus to escape the host cell is still unclear. In this study, we performed a genome-wide small hairpin RNA (shRNA) screen and identified the calcium signaling pathway as being involved in intracellular infection. S. aureus induced a massive cytosolic Ca\(^{2+}\) increase in epithelial host cells after invasion and intracellular replication of the pathogen. This was paralleled by a decrease in endoplasmic reticulum Ca\(^{2+}\) concentration. Additionally, calcium ions from the extracellular space contributed to the cytosolic Ca2+ increase. As a consequence, we observed that the cytoplasmic Ca\(^{2+}\) rise led to an increase in mitochondrial Ca\(^{2+}\) concentration, the activation of calpains and caspases, and eventually to cell lysis of S. aureus-infected cells. Our study therefore suggests that intracellular S. aureus disturbs the host cell Ca\(^{2+}\) homeostasis and induces cytoplasmic Ca\(^{2+}\) overload, which results in both apoptotic and necrotic cell death in parallel or succession. IMPORTANCE Despite being regarded as an extracellular bacterium, the pathogen Staphylococcus aureus can invade and survive within human cells. The intracellular niche is considered a hideout from the host immune system and antibiotic treatment and allows bacterial proliferation. Subsequently, the intracellular bacterium induces host cell death, which may facilitate the spread of infection and tissue destruction. So far, host cell factors exploited by intracellular S. aureus to promote cell death are only poorly characterized. We performed a genome-wide screen and found the calcium signaling pathway to play a role in S. aureus invasion and cytotoxicity. The intracellular bacterium induces a cytoplasmic and mitochondrial Ca\(^{2+}\) overload, which results in host cell death. Thus, this study first showed how an intracellular bacterium perturbs the host cell Ca\(^{2+}\) homeostasis." KW - Staphylococcus aureus KW - calcium signaling pathway KW - cell death KW - facultatively intracellular pathogens Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-231448 VL - 11 ER - TY - JOUR A1 - Han, Chao A1 - Ren, Pengxuan A1 - Mamtimin, Medina A1 - Kruk, Linus A1 - Sarukhanyan, Edita A1 - Li, Chenyu A1 - Anders, Hans-Joachim A1 - Dandekar, Thomas A1 - Krueger, Irena A1 - Elvers, Margitta A1 - Goebel, Silvia A1 - Adler, Kristin A1 - Münch, Götz A1 - Gudermann, Thomas A1 - Braun, Attila A1 - Mammadova-Bach, Elmina T1 - Minimal collagen-binding epitope of glycoprotein VI in human and mouse platelets JF - Biomedicines N2 - Glycoprotein VI (GPVI) is a platelet-specific receptor for collagen and fibrin, regulating important platelet functions such as platelet adhesion and thrombus growth. Although the blockade of GPVI function is widely recognized as a potent anti-thrombotic approach, there are limited studies focused on site-specific targeting of GPVI. Using computational modeling and bioinformatics, we analyzed collagen- and CRP-binding surfaces of GPVI monomers and dimers, and compared the interacting surfaces with other mammalian GPVI isoforms. We could predict a minimal collagen-binding epitope of GPVI dimer and designed an EA-20 antibody that recognizes a linear epitope of this surface. Using platelets and whole blood samples donated from wild-type and humanized GPVI transgenic mice and also humans, our experimental results show that the EA-20 antibody inhibits platelet adhesion and aggregation in response to collagen and CRP, but not to fibrin. The EA-20 antibody also prevents thrombus formation in whole blood, on the collagen-coated surface, in arterial flow conditions. We also show that EA-20 does not influence GPVI clustering or receptor shedding. Therefore, we propose that blockade of this minimal collagen-binding epitope of GPVI with the EA-20 antibody could represent a new anti-thrombotic approach by inhibiting specific interactions between GPVI and the collagen matrix. KW - GPVI KW - collagen KW - blood platelets KW - thrombosis KW - anti-thrombotic therapies Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-304148 SN - 2227-9059 VL - 11 IS - 2 ER - TY - JOUR A1 - Whisnant, Adam W. A1 - Jürges, Christopher S. A1 - Hennig, Thomas A1 - Wyler, Emanuel A1 - Prusty, Bhupesh A1 - Rutkowski, Andrzej J. A1 - L'hernault, Anne A1 - Djakovic, Lara A1 - Göbel, Margarete A1 - Döring, Kristina A1 - Menegatti, Jennifer A1 - Antrobus, Robin A1 - Matheson, Nicholas J. A1 - Künzig, Florian W. H. A1 - Mastrobuoni, Guido A1 - Bielow, Chris A1 - Kempa, Stefan A1 - Liang, Chunguang A1 - Dandekar, Thomas A1 - Zimmer, Ralf A1 - Landthaler, Markus A1 - Grässer, Friedrich A1 - Lehner, Paul J. A1 - Friedel, Caroline C. A1 - Erhard, Florian A1 - Dölken, Lars T1 - Integrative functional genomics decodes herpes simplex virus 1 JF - Nature Communications N2 - The predicted 80 open reading frames (ORFs) of herpes simplex virus 1 (HSV-1) have been intensively studied for decades. Here, we unravel the complete viral transcriptome and translatome during lytic infection with base-pair resolution by computational integration of multi-omics data. We identify a total of 201 transcripts and 284 ORFs including all known and 46 novel large ORFs. This includes a so far unknown ORF in the locus deleted in the FDA-approved oncolytic virus Imlygic. Multiple transcript isoforms expressed from individual gene loci explain translation of the vast majority of ORFs as well as N-terminal extensions (NTEs) and truncations. We show that NTEs with non-canonical start codons govern the subcellular protein localization and packaging of key viral regulators and structural proteins. We extend the current nomenclature to include all viral gene products and provide a genome browser that visualizes all the obtained data from whole genome to single-nucleotide resolution. Here, using computational integration of multi-omics data, the authors provide a detailed transcriptome and translatome of herpes simplex virus 1 (HSV-1), including previously unidentified ORFs and N-terminal extensions. The study also provides a HSV-1 genome browser and should be a valuable resource for further research. KW - infected-cell protein KW - messenger RNA KW - binding protein KW - type 1 KW - identification KW - ICP27 KW - translation KW - expression KW - sequence KW - domain Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-229884 VL - 11 ER - TY - JOUR A1 - Yang, Manli A1 - Rajeeve, Karthika A1 - Rudel, Thomas A1 - Dandekar, Thomas T1 - Comprehensive Flux Modeling of Chlamydia trachomatis Proteome and qRT-PCR Data Indicate Biphasic Metabolic Differences Between Elementary Bodies and Reticulate Bodies During Infection JF - Frontiers in Microbiology N2 - Metabolic adaptation to the host cell is important for obligate intracellular pathogens such as Chlamydia trachomatis (Ct). Here we infer the flux differences for Ct from proteome and qRT-PCR data by comprehensive pathway modeling. We compare the comparatively inert infectious elementary body (EB) and the active replicative reticulate body (RB) systematically using a genome-scale metabolic model with 321 metabolites and 277 reactions. This did yield 84 extreme pathways based on a published proteomics dataset at three different time points of infection. Validation of predictions was done by quantitative RT-PCR of enzyme mRNA expression at three time points. Ct’s major active pathways are glycolysis, gluconeogenesis, glycerol-phospholipid (GPL) biosynthesis (support from host acetyl-CoA) and pentose phosphate pathway (PPP), while its incomplete TCA and fatty acid biosynthesis are less active. The modeled metabolic pathways are much more active in RB than in EB. Our in silico model suggests that EB and RB utilize folate to generate NAD(P)H using independent pathways. The only low metabolic flux inferred for EB involves mainly carbohydrate metabolism. RB utilizes energy -rich compounds to generate ATP in nucleic acid metabolism. Validation data for the modeling include proteomics experiments (model basis) as well as qRT-PCR confirmation of selected metabolic enzyme mRNA expression differences. The metabolic modeling is made fully available here. Its detailed insights and models on Ct metabolic adaptations during infection are a useful modeling basis for future studies. KW - metabolic modeling KW - metabolic flux KW - infection biology KW - elementary body KW - reticulate body KW - Chlamydia trachomatis Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-189434 SN - 1664-302X VL - 10 IS - 2350 ER - TY - JOUR A1 - Grebinyk, Anna A1 - Prylutska, Svitlana A1 - Buchelnikov, Anatoliy A1 - Tverdokhleb, Nina A1 - Grebinyk, Sergii A1 - Evstigneev, Maxim A1 - Matyshevska, Olga A1 - Cherepanov, Vsevolod A1 - Prylutskyy, Yuriy A1 - Yashchuk, Valeriy A1 - Naumovets, Anton A1 - Ritter, Uwe A1 - Dandekar, Thomas A1 - Frohme, Marcus T1 - C60 fullerene as an effective nanoplatform of alkaloid Berberine delivery into leukemic cells JF - Pharmaceutics N2 - A herbal alkaloid Berberine (Ber), used for centuries in Ayurvedic, Chinese, Middle-Eastern, and native American folk medicines, is nowadays proved to function as a safe anticancer agent. Yet, its poor water solubility, stability, and bioavailability hinder clinical application. In this study, we have explored a nanosized carbon nanoparticle—C60 fullerene (C60)—for optimized Ber delivery into leukemic cells. Water dispersions of noncovalent C60-Ber nanocomplexes in the 1:2, 1:1, and 2:1 molar ratios were prepared. UV–Vis spectroscopy, dynamic light scattering (DLS), and atomic force microscopy (AFM) evidenced a complexation of the Ber cation with the negatively charged C60 molecule. The computer simulation showed that π-stacking dominates in Ber and C\(_{60}\) binding in an aqueous solution. Complexation with C\(_{60}\) was found to promote Ber intracellular uptake. By increasing C\(_{60}\) concentration, the C\(_{60}\)-Ber nanocomplexes exhibited higher antiproliferative potential towards CCRF-CEM cells, in accordance with the following order: free Ber < 1:2 < 1:1 < 2:1 (the most toxic). The activation of caspase 3/7 and accumulation in the sub-G1 phase of CCRF-CEM cells treated with C\(_{60}\)-Ber nanocomplexes evidenced apoptosis induction. Thus, this study indicates that the fast and easy noncovalent complexation of alkaloid Ber with C\(_{60}\) improved its in vitro efficiency against cancer cells. KW - C60 fullerene KW - Berberine KW - noncovalent nanocomplex KW - UV–Vis KW - DLS and AFM measurements KW - drug release KW - leukemic cells KW - uptake KW - cytotoxicity KW - apoptosis Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-193216 SN - 1999-4923 VL - 11 IS - 11 ER - TY - INPR A1 - Dandekar, Thomas T1 - Biological heuristics applied to cosmology suggests a condensation nucleus as start of our universe and inflation cosmology replaced by a period of rapid Weiss domain-like crystal growth N2 - Cosmology often uses intricate formulas and mathematics to derive new theories and concepts. We do something different in this paper: We look at biological processes and derive from these heuristics so that the revised cosmology agrees with astronomical observations but does also agree with standard biological observations. We show that we then have to replace any type of singularity at the start of the universe by a condensation nucleus and that the very early period of the universe usually assumed to be inflation has to be replaced by a period of rapid crystal growth as in Weiss magnetization domains. Impressively, these minor modifications agree well with astronomical observations including removing the strong inflation perturbations which were never observed in the recent BICEP2 experiments. Furthermore, looking at biological principles suggests that such a new theory with a condensation nucleus at start and a first rapid phase of magnetization-like growth of the ordered, physical laws obeying lattice we live in is in fact the only convincing theory of the early phases of our universe that also is compatible with current observations. We show in detail in the following that such a process of crystal creation, breaking of new crystal seeds and ultimate evaporation of the present crystal readily leads over several generations to an evolution and selection of better, more stable and more self-organizing crystals. Moreover, this explains the “fine-tuning” question why our universe is fine-tuned to favor life: Our Universe is so self-organizing to have enough offspring and the detailed physics involved is at the same time highly favorable for all self-organizing processes including life. This biological theory contrasts with current standard inflation cosmologies. The latter do not perform well in explaining any phenomena of sophisticated structure creation or self-organization. As proteins can only thermodynamically fold by increasing the entropy in the solution around them we suggest for cosmology a condensation nucleus for a universe can form only in a “chaotic ocean” of string-soup or quantum foam if the entropy outside of the nucleus rapidly increases. We derive an interaction potential for 1 to n-dimensional strings or quantum-foams and show that they allow only 1D, 2D, 4D or octonion interactions. The latter is the richest structure and agrees to the E8 symmetry fundamental to particle physics and also compatible with the ten dimensional string theory E8 which is part of the M-theory. Interestingly, any other interactions of other dimensionality can be ruled out using Hurwitz compositional theorem. Crystallization explains also extremely well why we have only one macroscopic reality and where the worldlines of alternative trajectories exist: They are in other planes of the crystal and for energy reasons they crystallize mostly at the same time, yielding a beautiful and stable crystal. This explains decoherence and allows to determine the size of Planck´s quantum h (very small as separation of crystal layers by energy is extremely strong). Ultimate dissolution of real crystals suggests an explanation for dark energy agreeing with estimates for the “big rip”. The halo distribution of dark matter favoring galaxy formation is readily explained by a crystal seed starting with unit cells made of normal and dark matter. That we have only matter and not antimatter can be explained as there may be right handed mattercrystals and left-handed antimatter crystals. Similarly, real crystals are never perfect and we argue that exactly such irregularities allow formation of galaxies, clusters and superclusters. Finally, heuristics from genetics suggest to look for a systems perspective to derive correct vacuum and Higgs Boson energies. KW - heuristics KW - inflation KW - cosmology KW - crystallization KW - crystal growth KW - E8 symmetry KW - Hurwitz theorem KW - evolution KW - Lee Smolin Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-183945 ER - TY - JOUR A1 - Kunz, Meik A1 - Liang, Chunguang A1 - Nilla, Santosh A1 - Cecil, Alexander A1 - Dandekar, Thomas T1 - The drug-minded protein interaction database (DrumPID) for efficient target analysis and drug development JF - Database N2 - The drug-minded protein interaction database (DrumPID) has been designed to provide fast, tailored information on drugs and their protein networks including indications, protein targets and side-targets. Starting queries include compound, target and protein interactions and organism-specific protein families. Furthermore, drug name, chemical structures and their SMILES notation, affected proteins (potential drug targets), organisms as well as diseases can be queried including various combinations and refinement of searches. Drugs and protein interactions are analyzed in detail with reference to protein structures and catalytic domains, related compound structures as well as potential targets in other organisms. DrumPID considers drug functionality, compound similarity, target structure, interactome analysis and organismic range for a compound, useful for drug development, predicting drug side-effects and structure–activity relationships. KW - drug-minded protein KW - database Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-147369 VL - 2016 ER - TY - JOUR A1 - Kaltdorf, Martin A1 - Srivastava, Mugdha A1 - Gupta, Shishir K. A1 - Liang, Chunguang A1 - Binder, Jasmin A1 - Dietl, Anna-Maria A1 - Meir, Zohar A1 - Haas, Hubertus A1 - Osherov, Nir A1 - Krappmann, Sven A1 - Dandekar, Thomas T1 - Systematic Identification of Anti-Fungal Drug Targets by a Metabolic Network Approach JF - Frontiers in Molecular Bioscience N2 - New antimycotic drugs are challenging to find, as potential target proteins may have close human orthologs. We here focus on identifying metabolic targets that are critical for fungal growth and have minimal similarity to targets among human proteins. We compare and combine here: (I) direct metabolic network modeling using elementary mode analysis and flux estimates approximations using expression data, (II) targeting metabolic genes by transcriptome analysis of condition-specific highly expressed enzymes, and (III) analysis of enzyme structure, enzyme interconnectedness (“hubs”), and identification of pathogen-specific enzymes using orthology relations. We have identified 64 targets including metabolic enzymes involved in vitamin synthesis, lipid, and amino acid biosynthesis including 18 targets validated from the literature, two validated and five currently examined in own genetic experiments, and 38 further promising novel target proteins which are non-orthologous to human proteins, involved in metabolism and are highly ranked drug targets from these pipelines. KW - metabolism KW - targets KW - antimycotics KW - modeling KW - structure KW - interaction KW - fungicide Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-147396 VL - 3 ER - TY - JOUR A1 - Shityakov, Sergey A1 - Dandekar, Thomas A1 - Förster, Carola T1 - Gene expression profiles and protein-protein interaction network analysis in AIDS patients with HIV-associated encephalitis and dementia JF - HIV/AIDS: Research and Palliative Care N2 - Central nervous system dysfunction is an important cause of morbidity and mortality in patients with human immunodeficiency virus type 1 (HIV-1) infection and acquired immunodeficiency virus syndrome (AIDS). Patients with AIDS are usually affected by HIV-associated encephalitis (HIVE) with viral replication limited to cells of monocyte origin. To examine the molecular mechanisms underlying HIVE-induced dementia, the GSE4755 Affymetrix data were obtained from the Gene Expression Omnibus database and the differentially expressed genes (DEGs) between the samples from AIDS patients with and without apparent features of HIVE-induced dementia were identified. In addition, protein–protein interaction networks were constructed by mapping DEGs into protein–protein interaction data to identify the pathways that these DEGs are involved in. The results revealed that the expression of 1,528 DEGs is mainly involved in the immune response, regulation of cell proliferation, cellular response to inflammation, signal transduction, and viral replication cycle. Heat-shock protein alpha, class A member 1 (HSP90AA1), and fibronectin 1 were detected as hub nodes with degree values >130. In conclusion, the results indicate that HSP90A and fibronectin 1 play important roles in HIVE pathogenesis. KW - microarray KW - differentially expressed genes KW - protein-protein interaction network KW - gene ontology KW - encephalitis dementia KW - human immunodeficiency virus Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-149494 VL - 7 ER - TY - JOUR A1 - Wolf, Beat A1 - Kuonen, Pierre A1 - Dandekar, Thomas A1 - Atlan, David T1 - DNAseq workflow in a diagnostic context and an example of a user friendly implementation JF - BioMed Research International N2 - Over recent years next generation sequencing (NGS) technologies evolved from costly tools used by very few, to a much more accessible and economically viable technology. Through this recently gained popularity, its use-cases expanded from research environments into clinical settings. But the technical know-how and infrastructure required to analyze the data remain an obstacle for a wider adoption of this technology, especially in smaller laboratories. We present GensearchNGS, a commercial DNAseq software suite distributed by Phenosystems SA. The focus of GensearchNGS is the optimal usage of already existing infrastructure, while keeping its use simple. This is achieved through the integration of existing tools in a comprehensive software environment, as well as custom algorithms developed with the restrictions of limited infrastructures in mind. This includes the possibility to connect multiple computers to speed up computing intensive parts of the analysis such as sequence alignments. We present a typical DNAseq workflow for NGS data analysis and the approach GensearchNGS takes to implement it. The presented workflow goes from raw data quality control to the final variant report. This includes features such as gene panels and the integration of online databases, like Ensembl for annotations or Cafe Variome for variant sharing. KW - next generation sequencing KW - genome browser KW - mutation KW - algorithm KW - database KW - format KW - discovery KW - exome KW - variants KW - alignment Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-144527 IS - 403497 ER - TY - JOUR A1 - Othman, Eman M. A1 - Naseem, Muhammed A1 - Awad, Eman A1 - Dandekar, Thomas A1 - Stopper, Helga T1 - The Plant Hormone Cytokinin Confers Protection against Oxidative Stress in Mammalian Cells JF - PLoS One N2 - Modulating key dynamics of plant growth and development, the effects of the plant hormone cytokinin on animal cells gained much attention recently. Most previous studies on cytokinin effects on mammalian cells have been conducted with elevated cytokinin concentration (in the μM range). However, to examine physiologically relevant dose effects of cytokinins on animal cells, we systematically analyzed the impact of kinetin in cultured cells at low and high concentrations (1nM-10μM) and examined cytotoxic and genotoxic conditions. We furthermore measured the intrinsic antioxidant activity of kinetin in a cell-free system using the Ferric Reducing Antioxidant Power assay and in cells using the dihydroethidium staining method. Monitoring viability, we looked at kinetin effects in mammalian cells such as HL60 cells, HaCaT human keratinocyte cells, NRK rat epithelial kidney cells and human peripheral lymphocytes. Kinetin manifests no antioxidant activity in the cell free system and high doses of kinetin (500 nM and higher) reduce cell viability and mediate DNA damage in vitro. In contrast, low doses (concentrations up to 100 nM) of kinetin confer protection in cells against oxidative stress. Moreover, our results show that pretreatment of the cells with kinetin significantly reduces 4-nitroquinoline 1-oxide mediated reactive oxygen species production. Also, pretreatment with kinetin retains cellular GSH levels when they are also treated with the GSH-depleting agent patulin. Our results explicitly show that low kinetin doses reduce apoptosis and protect cells from oxidative stress mediated cell death. Future studies on the interaction between cytokinins and human cellular pathway targets will be intriguing. KW - DNA damage KW - apoptosis KW - oxidative stress KW - fluorescence recovery after photobleaching KW - lymphocytes KW - antioxidants KW - cell staining KW - cytokinins Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-147983 VL - 11 IS - 12 ER - TY - JOUR A1 - Kunz, Meik A1 - Wolf, Beat A1 - Schulze, Harald A1 - Atlan, David A1 - Walles, Thorsten A1 - Walles, Heike A1 - Dandekar, Thomas T1 - Non-Coding RNAs in Lung Cancer: Contribution of Bioinformatics Analysis to the Development of Non-Invasive Diagnostic Tools JF - Genes N2 - Lung cancer is currently the leading cause of cancer related mortality due to late diagnosis and limited treatment intervention. Non-coding RNAs are not translated into proteins and have emerged as fundamental regulators of gene expression. Recent studies reported that microRNAs and long non-coding RNAs are involved in lung cancer development and progression. Moreover, they appear as new promising non-invasive biomarkers for early lung cancer diagnosis. Here, we highlight their potential as biomarker in lung cancer and present how bioinformatics can contribute to the development of non-invasive diagnostic tools. For this, we discuss several bioinformatics algorithms and software tools for a comprehensive understanding and functional characterization of microRNAs and long non-coding RNAs. KW - lung cancer KW - non-invasive biomarkers KW - miRNAs KW - lncRNAs KW - bioinformatics KW - early diagnosis KW - algorithm Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-147990 VL - 8 IS - 1 ER -