TY - JOUR A1 - Peindl, Matthias A1 - Göttlich, Claudia A1 - Crouch, Samantha A1 - Hoff, Niklas A1 - Lüttgens, Tamara A1 - Schmitt, Franziska A1 - Pereira, Jesús Guillermo Nieves A1 - May, Celina A1 - Schliermann, Anna A1 - Kronenthaler, Corinna A1 - Cheufou, Danjouma A1 - Reu-Hofer, Simone A1 - Rosenwald, Andreas A1 - Weigl, Elena A1 - Walles, Thorsten A1 - Schüler, Julia A1 - Dandekar, Thomas A1 - Nietzer, Sarah A1 - Dandekar, Gudrun T1 - EMT, stemness, and drug resistance in biological context: a 3D tumor tissue/in silico platform for analysis of combinatorial treatment in NSCLC with aggressive KRAS-biomarker signatures JF - Cancers N2 - Epithelial-to-mesenchymal transition (EMT) is discussed to be centrally involved in invasion, stemness, and drug resistance. Experimental models to evaluate this process in its biological complexity are limited. To shed light on EMT impact and test drug response more reliably, we use a lung tumor test system based on a decellularized intestinal matrix showing more in vivo-like proliferation levels and enhanced expression of clinical markers and carcinogenesis-related genes. In our models, we found evidence for a correlation of EMT with drug resistance in primary and secondary resistant cells harboring KRAS\(^{G12C}\) or EGFR mutations, which was simulated in silico based on an optimized signaling network topology. Notably, drug resistance did not correlate with EMT status in KRAS-mutated patient-derived xenograft (PDX) cell lines, and drug efficacy was not affected by EMT induction via TGF-β. To investigate further determinants of drug response, we tested several drugs in combination with a KRAS\(^{G12C}\) inhibitor in KRAS\(^{G12C}\) mutant HCC44 models, which, besides EMT, display mutations in P53, LKB1, KEAP1, and high c-MYC expression. We identified an aurora-kinase A (AURKA) inhibitor as the most promising candidate. In our network, AURKA is a centrally linked hub to EMT, proliferation, apoptosis, LKB1, and c-MYC. This exemplifies our systemic analysis approach for clinical translation of biomarker signatures. KW - EMT KW - drug resistance KW - invasion KW - stemness KW - 3D lung tumor tissue models KW - KRAS biomarker signatures KW - boolean in silico models KW - targeted combination therapy Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-270744 SN - 2072-6694 VL - 14 IS - 9 ER - TY - JOUR A1 - Bencurova, Elena A1 - Shityakov, Sergey A1 - Schaack, Dominik A1 - Kaltdorf, Martin A1 - Sarukhanyan, Edita A1 - Hilgarth, Alexander A1 - Rath, Christin A1 - Montenegro, Sergio A1 - Roth, Günter A1 - Lopez, Daniel A1 - Dandekar, Thomas T1 - Nanocellulose composites as smart devices with chassis, light-directed DNA Storage, engineered electronic properties, and chip integration JF - Frontiers in Bioengineering and Biotechnology N2 - The rapid development of green and sustainable materials opens up new possibilities in the field of applied research. Such materials include nanocellulose composites that can integrate many components into composites and provide a good chassis for smart devices. In our study, we evaluate four approaches for turning a nanocellulose composite into an information storage or processing device: 1) nanocellulose can be a suitable carrier material and protect information stored in DNA. 2) Nucleotide-processing enzymes (polymerase and exonuclease) can be controlled by light after fusing them with light-gating domains; nucleotide substrate specificity can be changed by mutation or pH change (read-in and read-out of the information). 3) Semiconductors and electronic capabilities can be achieved: we show that nanocellulose is rendered electronic by iodine treatment replacing silicon including microstructures. Nanocellulose semiconductor properties are measured, and the resulting potential including single-electron transistors (SET) and their properties are modeled. Electric current can also be transported by DNA through G-quadruplex DNA molecules; these as well as classical silicon semiconductors can easily be integrated into the nanocellulose composite. 4) To elaborate upon miniaturization and integration for a smart nanocellulose chip device, we demonstrate pH-sensitive dyes in nanocellulose, nanopore creation, and kinase micropatterning on bacterial membranes as well as digital PCR micro-wells. Future application potential includes nano-3D printing and fast molecular processors (e.g., SETs) integrated with DNA storage and conventional electronics. This would also lead to environment-friendly nanocellulose chips for information processing as well as smart nanocellulose composites for biomedical applications and nano-factories. KW - nanocellulose KW - DNA storage KW - light-gated proteins KW - single-electron transistors KW - protein chip Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-283033 SN - 2296-4185 VL - 10 ER - TY - JOUR A1 - Gupta, Shishir K. A1 - Osmanoglu, Özge A1 - Minocha, Rashmi A1 - Bandi, Sourish Reddy A1 - Bencurova, Elena A1 - Srivastava, Mugdha A1 - Dandekar, Thomas T1 - Genome-wide scan for potential CD4+ T-cell vaccine candidates in Candida auris by exploiting reverse vaccinology and evolutionary information JF - Frontiers in Medicine N2 - Candida auris is a globally emerging fungal pathogen responsible for causing nosocomial outbreaks in healthcare associated settings. It is known to cause infection in all age groups and exhibits multi-drug resistance with high potential for horizontal transmission. Because of this reason combined with limited therapeutic choices available, C. auris infection has been acknowledged as a potential risk for causing a future pandemic, and thus seeking a promising strategy for its treatment is imperative. Here, we combined evolutionary information with reverse vaccinology approach to identify novel epitopes for vaccine design that could elicit CD4+ T-cell responses against C. auris. To this end, we extensively scanned the family of proteins encoded by C. auris genome. In addition, a pathogen may acquire substitutions in epitopes over a period of time which could cause its escape from the immune response thus rendering the vaccine ineffective. To lower this possibility in our design, we eliminated all rapidly evolving genes of C. auris with positive selection. We further employed highly conserved regions of multiple C. auris strains and identified two immunogenic and antigenic T-cell epitopes that could generate the most effective immune response against C. auris. The antigenicity scores of our predicted vaccine candidates were calculated as 0.85 and 1.88 where 0.5 is the threshold for prediction of fungal antigenic sequences. Based on our results, we conclude that our vaccine candidates have the potential to be successfully employed for the treatment of C. auris infection. However, in vivo experiments are imperative to further demonstrate the efficacy of our design. KW - T-cell epitope KW - epitope prediction KW - positive selection KW - evolution KW - immune-informatics Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-293953 SN - 2296-858X VL - 9 ER - TY - JOUR A1 - Prada, Juan Pablo A1 - Maag, Luca Estelle A1 - Siegmund, Laura A1 - Bencurova, Elena A1 - Liang, Chunguang A1 - Koutsilieri, Eleni A1 - Dandekar, Thomas A1 - Scheller, Carsten T1 - Estimation of R0 for the spread of SARS-CoV-2 in Germany from excess mortality JF - Scientific Reports N2 - For SARS-CoV-2, R0 calculations in the range of 2–3 dominate the literature, but much higher estimates have also been published. Because capacity for RT-PCR testing increased greatly in the early phase of the Covid-19 pandemic, R0 determinations based on these incidence values are subject to strong bias. We propose to use Covid-19-induced excess mortality to determine R0 regardless of RT-PCR testing capacity. We used data from the Robert Koch Institute (RKI) on the incidence of Covid cases, Covid-related deaths, number of RT-PCR tests performed, and excess mortality calculated from data from the Federal Statistical Office in Germany. We determined R0 using exponential growth estimates with a serial interval of 4.7 days. We used only datasets that were not yet under the influence of policy measures (e.g., lockdowns or school closures). The uncorrected R0 value for the spread of SARS-CoV-2 based on RT-PCR incidence data was 2.56 (95% CI 2.52–2.60) for Covid-19 cases and 2.03 (95% CI 1.96–2.10) for Covid-19-related deaths. However, because the number of RT-PCR tests increased by a growth factor of 1.381 during the same period, these R0 values must be corrected accordingly (R0corrected = R0uncorrected/1.381), yielding 1.86 for Covid-19 cases and 1.47 for Covid-19 deaths. The R0 value based on excess deaths was calculated to be 1.34 (95% CI 1.32–1.37). A sine-function-based adjustment for seasonal effects of 40% corresponds to a maximum value of R0January = 1.68 and a minimum value of R0July = 1.01. Our calculations show an R0 that is much lower than previously thought. This relatively low range of R0 fits very well with the observed seasonal pattern of infection across Europe in 2020 and 2021, including the emergence of more contagious escape variants such as delta or omicron. In general, our study shows that excess mortality can be used as a reliable surrogate to determine the R0 in pandemic situations. KW - SARS-CoV-2 KW - R0 KW - mortality Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-301415 VL - 12 IS - 1 ER - TY - JOUR A1 - Aydinli, Muharrem A1 - Liang, Chunguang A1 - Dandekar, Thomas T1 - Motif and conserved module analysis in DNA (promoters, enhancers) and RNA (lncRNA, mRNA) using AlModules JF - Scientific Reports N2 - Nucleic acid motifs consist of conserved and variable nucleotide regions. For functional action, several motifs are combined to modules. The tool AIModules allows identification of such motifs including combinations of them and conservation in several nucleic acid stretches. AIModules recognizes conserved motifs and combinations of motifs (modules) allowing a number of interesting biological applications such as analysis of promoter and transcription factor binding sites (TFBS), identification of conserved modules shared between several gene families, e.g. promoter regions, but also analysis of shared and conserved other DNA motifs such as enhancers and silencers, in mRNA (motifs or regulatory elements e.g. for polyadenylation) and lncRNAs. The tool AIModules presented here is an integrated solution for motif analysis, offered as a Web service as well as downloadable software. Several nucleotide sequences are queried for TFBSs using predefined matrices from the JASPAR DB or by using one’s own matrices for diverse types of DNA or RNA motif discovery. Furthermore, AIModules can find TFBSs common to two or more sequences. Demanding high or low conservation, AIModules outperforms other solutions in speed and finds more modules (specific combinations of TFBS) than alternative available software. The application also searches RNA motifs such as polyadenylation site or RNA–protein binding motifs as well as DNA motifs such as enhancers as well as user-specified motif combinations (https://bioinfo-wuerz.de/aimodules/; alternative entry pages: https://aimodules.heinzelab.de or https://www.biozentrum.uni-wuerzburg.de/bioinfo/computing/aimodules). The application is free and open source whether used online, on-site, or locally. KW - AIModules KW - nucleic acid motifs KW - DNA Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-301268 VL - 12 IS - 1 ER - TY - JOUR A1 - Abdel-Latif, Rania A1 - Fathy, Moustafa A1 - Anwar, Hend Ali A1 - Naseem, Muhammad A1 - Dandekar, Thomas A1 - Othman, Eman M. T1 - Cisplatin-induced reproductive toxicity and oxidative stress: ameliorative effect of kinetin JF - Antioxidants N2 - Cisplatin is a commonly used chemotherapeutic agent; however, its potential side effects, including gonadotoxicity and infertility, are a critical problem. Oxidative stress has been implicated in the pathogenesis of cisplatin-induced testicular dysfunction. We investigated whether kinetin use at different concentrations could alleviate gonadal injury associated with cisplatin treatment, with an exploration of the involvement of its antioxidant capacity. Kinetin was administered in different doses of 0.25, 0.5, and 1 mg/kg, alone or along with cisplatin for 10 days. Cisplatin toxicity was induced via a single IP dose of 7 mg/kg on day four. In a dose-dependent manner, concomitant administration of kinetin with cisplatin significantly restored testicular oxidative stress parameters, corrected the distorted sperm quality parameters and histopathological changes, enhanced levels of serum testosterone and testicular StAR protein expression, as well as reduced the up-regulation of testicular TNF-α, IL-1β, Il-6, and caspase-3, caused by cisplatin. It is worth noting that the testicular protective effect of the highest kinetin dose was comparable/more potent and significantly higher than the effects of vitamin C and the lowest kinetin dose, respectively. Overall, these data indicate that kinetin may offer a promising approach for alleviating cisplatin-induced reproductive toxicity and organ damage, via ameliorating oxidative stress and reducing inflammation and apoptosis. KW - cytokinins KW - kinetin KW - cisplatin KW - reproductive toxicity Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-271223 SN - 2076-3921 VL - 11 IS - 5 ER - TY - JOUR A1 - Caliskan, Aylin A1 - Crouch, Samantha A. W. A1 - Giddins, Sara A1 - Dandekar, Thomas A1 - Dangwal, Seema T1 - Progeria and aging — Omics based comparative analysis JF - Biomedicines N2 - Since ancient times aging has also been regarded as a disease, and humankind has always strived to extend the natural lifespan. Analyzing the genes involved in aging and disease allows for finding important indicators and biological markers for pathologies and possible therapeutic targets. An example of the use of omics technologies is the research regarding aging and the rare and fatal premature aging syndrome progeria (Hutchinson-Gilford progeria syndrome, HGPS). In our study, we focused on the in silico analysis of differentially expressed genes (DEGs) in progeria and aging, using a publicly available RNA-Seq dataset (GEO dataset GSE113957) and a variety of bioinformatics tools. Despite the GSE113957 RNA-Seq dataset being well-known and frequently analyzed, the RNA-Seq data shared by Fleischer et al. is far from exhausted and reusing and repurposing the data still reveals new insights. By analyzing the literature citing the use of the dataset and subsequently conducting a comparative analysis comparing the RNA-Seq data analyses of different subsets of the dataset (healthy children, nonagenarians and progeria patients), we identified several genes involved in both natural aging and progeria (KRT8, KRT18, ACKR4, CCL2, UCP2, ADAMTS15, ACTN4P1, WNT16, IGFBP2). Further analyzing these genes and the pathways involved indicated their possible roles in aging, suggesting the need for further in vitro and in vivo research. In this paper, we (1) compare “normal aging” (nonagenarians vs. healthy children) and progeria (HGPS patients vs. healthy children), (2) enlist genes possibly involved in both the natural aging process and progeria, including the first mention of IGFBP2 in progeria, (3) predict miRNAs and interactomes for WNT16 (hsa-mir-181a-5p), UCP2 (hsa-mir-26a-5p and hsa-mir-124-3p), and IGFBP2 (hsa-mir-124-3p, hsa-mir-126-3p, and hsa-mir-27b-3p), (4) demonstrate the compatibility of well-established R packages for RNA-Seq analysis for researchers interested but not yet familiar with this kind of analysis, and (5) present comparative proteomics analyses to show an association between our RNA-Seq data analyses and corresponding changes in protein expression. KW - progeria KW - aging KW - omics KW - RNA sequencing KW - bioinformatics KW - sun exposure KW - HGPS KW - IGFBP2 KW - ACKR4 KW - WNT Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-289868 SN - 2227-9059 VL - 10 IS - 10 ER - TY - JOUR A1 - Fathy, Moustafa A1 - Saad Eldin, Sahar M. A1 - Naseem, Muhammad A1 - Dandekar, Thomas A1 - Othman, Eman M. T1 - Cytokinins: wide-spread signaling hormones from plants to humans with high medical potential JF - Nutrients N2 - Nature is a rich source of biologically active novel compounds. Sixty years ago, the plant hormones cytokinins were first discovered. These play a major role in cell division and cell differentiation. They affect organogenesis in plant tissue cultures and contribute to many other physiological and developmental processes in plants. Consequently, the effect of cytokinins on mammalian cells has caught the attention of researchers. Many reports on the contribution and potential of cytokinins in the therapy of different human diseases and pathophysiological conditions have been published and are reviewed here. We compare cytokinin effects and pathways in plants and mammalian systems and highlight the most important biological activities. We present the strong profile of the biological actions of cytokinins and their possible therapeutic applications. KW - cytokinins KW - phytohormones KW - biological activities KW - plant system KW - mammalian system Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-271017 SN - 2072-6643 VL - 14 IS - 7 ER - TY - JOUR A1 - Sarukhanyan, Edita A1 - Shanmugam, Tipack Ayothyapattanam A1 - Dandekar, Thomas T1 - In silico studies reveal Peramivir and Zanamivir as an optimal drug treatment even if H7N9 avian type influenza virus acquires further resistance JF - Molecules N2 - An epidemic of avian type H7N9 influenza virus, which took place in China in 2013, was enhanced by a naturally occurring R294K mutation resistant against Oseltamivir at the catalytic site of the neuraminidase. To cope with such drug-resistant neuraminidase mutations, we applied the molecular docking technique to evaluate the fitness of the available drugs such as Oseltamivir, Zanamivir, Peramivir, Laninamivir, L-Arginine and Benserazide hydrochloride concerning the N9 enzyme with single (R294K, R119K, R372K), double (R119_294K, R119_372K, R294_372K) and triple (R119_294_372K) mutations in the pocket. We found that the drugs Peramivir and Zanamivir score best amongst the studied compounds, demonstrating their high binding potential towards the pockets with the considered mutations. Despite the fact that mutations changed the shape of the pocket and reduced the binding strength for all drugs, Peramivir was the only drug that formed interactions with the key residues at positions 119, 294 and 372 in the pocket of the triple N9 mutant, while Zanamivir demonstrated the lowest RMSD value (0.7 Å) with respect to the reference structure. KW - H7N9 influenza virus KW - neuraminidase KW - mutation KW - binding pocket KW - molecular docking Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-288240 SN - 1420-3049 VL - 27 IS - 18 ER - TY - JOUR A1 - Gupta, Shishir K. A1 - Minocha, Rashmi A1 - Thapa, Prithivi Jung A1 - Srivastava, Mugdha A1 - Dandekar, Thomas T1 - Role of the pangolin in origin of SARS-CoV-2: an evolutionary perspective JF - International Journal of Molecular Sciences N2 - After the recent emergence of SARS-CoV-2 infection, unanswered questions remain related to its evolutionary history, path of transmission or divergence and role of recombination. There is emerging evidence on amino acid substitutions occurring in key residues of the receptor-binding domain of the spike glycoprotein in coronavirus isolates from bat and pangolins. In this article, we summarize our current knowledge on the origin of SARS-CoV-2. We also analyze the host ACE2-interacting residues of the receptor-binding domain of spike glycoprotein in SARS-CoV-2 isolates from bats, and compare it to pangolin SARS-CoV-2 isolates collected from Guangdong province (GD Pangolin-CoV) and Guangxi autonomous regions (GX Pangolin-CoV) of South China. Based on our comparative analysis, we support the view that the Guangdong Pangolins are the intermediate hosts that adapted the SARS-CoV-2 and represented a significant evolutionary link in the path of transmission of SARS-CoV-2 virus. We also discuss the role of intermediate hosts in the origin of Omicron. KW - COVID-19 KW - SARS-CoV-2 KW - origin KW - evolution KW - intermediate host KW - pangolin KW - mutation KW - recombination KW - adaptation KW - transmission KW - comparative sequence analysis Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-285995 SN - 1422-0067 VL - 23 IS - 16 ER -