TY - JOUR A1 - Dandekar, Thomas A1 - Argos, P. T1 - Drug assay using antibody mimics made by molecular imprinting N2 - No abstract available Y1 - 1993 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-30003 ER - TY - JOUR A1 - Dandekar, Thomas A1 - Argos, P. T1 - Potential of genetic algorithms in protein folding and protein engineering simulations N2 - No abstract available Y1 - 1992 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-29974 ER - TY - JOUR A1 - Dandekar, Thomas A1 - Argos, Patrick T1 - Successive action of DnaK, DnaJ and GroEL along the pathway of chaperone-mediated protein folding N2 - No abstract available Y1 - 1992 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-29814 ER - TY - JOUR A1 - Dandekar, Thomas A1 - Tollervey, David T1 - Cloning of Schizosaccharomyces pombe genes encoding the U1,U2,U3 and U4 snRNAs N2 - No abstract available Y1 - 1989 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-29919 ER - TY - JOUR A1 - Dandekar, Thomas A1 - Gramsch, Christian A1 - Houghton, Richard A. A1 - Schultz, Rüdiger T1 - Affinity purification of \(\beta\)-endorphin-like material from NG108CC15 cells by means of the monoclonal \(\beta\)-endorphin antibody 3-E7 N2 - No abstract available Y1 - 1985 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-29896 ER - TY - JOUR A1 - Dandekar, Thomas A1 - Argos, P. T1 - Three-dimensional structure of the 67k N-terminal Fragment of E.coli DNA Topoisomerase I N2 - No abstract available Y1 - 1994 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-29836 ER - TY - JOUR A1 - Dandekar, Thomas A1 - Argos, P. T1 - Folding the main chain of small proteins with the genetic algorithm N2 - No abstract available Y1 - 1994 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-29847 ER - TY - JOUR A1 - Dandekar, Thomas A1 - Tollervey, David T1 - Identification and functional analysis of a novel yeast small nucleolar RNA N2 - No abstract available Y1 - 1993 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-29850 ER - TY - JOUR A1 - Dandekar, Thomas A1 - Argos, P. T1 - The GCN4 basic region leucine zipper binds DNA as a dimer of uninterrupted \(\alpha\)-helices: Crystal structure of the protein DNA-complex N2 - No abstract available Y1 - 1993 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-29866 ER - TY - JOUR A1 - Dandekar, Thomas A1 - Schulz, R. T1 - Evidence for the expression of peptides derived from three opioid precursors in NG 108CC15 hybrid cells N2 - No abstract available Y1 - 1987 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-29909 ER - TY - JOUR A1 - Dandekar, Thomas A1 - Argos, Patrick T1 - Chaperonin-mediated protein folding at the surface of groEL through a "molten globule" intermediate N2 - No abstract available Y1 - 1991 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-29939 ER - TY - JOUR A1 - Shityakov, Sergey A1 - Förster, Carola A1 - Rethwilm, Axel A1 - Dandekar, Thomas T1 - Evaluation and Prediction of the HIV-1 Central Polypurine Tract Influence on Foamy Viral Vectors to Transduce Dividing and Growth-Arrested Cells N2 - Retroviral vectors are potent tools for gene delivery and various biomedical applications. To accomplish a gene transfer task successfully, retroviral vectors must effectively transduce diverse cell cultures at different phases of a cell cycle. However, very promising retroviral vectors based on the foamy viral (FV) backbone lack the capacity to efficiently transduce quiescent cells. It is hypothesized that this phenomenon might be explained as the inability of foamy viruses to form a pre-integration complex (PIC) with nuclear import activity in growth-arrested cells, which is the characteristic for lentiviruses (HIV-1). In this process, the HIV-1 central polypurine tract (cPPT) serves as a primer for plus-strand synthesis to produce a “flap” element and is believed to be crucial for the subsequent double-stranded cDNA formation of all retroviral RNA genomes. In this study, the effects of the lentiviral cPPT element on the FV transduction potential in dividing and growth-arrested (G1/S phase) adenocarcinomic human alveolar basal epithelial (A549) cells are investigated by experimental and theoretical methods. The results indicated that the HIV-1 cPPT element in a foamy viral vector background will lead to a significant reduction of the FV transduction and viral titre in growth-arrested cells due to the absence of PICs with nuclear import activity. KW - Evaluation KW - Prognose KW - HIV KW - Spumaviren KW - Einfluss Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-112763 ER - TY - JOUR A1 - Schulze, Katja A1 - Tillich, Ulrich M. A1 - Dandekar, Thomas A1 - Frohme, Marcus T1 - PlanktoVision – an automated analysis system for the identification of phytoplankton JF - BMC Bioinformatics N2 - Background Phytoplankton communities are often used as a marker for the determination of fresh water quality. The routine analysis, however, is very time consuming and expensive as it is carried out manually by trained personnel. The goal of this work is to develop a system for an automated analysis. Results A novel open source system for the automated recognition of phytoplankton by the use of microscopy and image analysis was developed. It integrates the segmentation of the organisms from the background, the calculation of a large range of features, and a neural network for the classification of imaged organisms into different groups of plankton taxa. The analysis of samples containing 10 different taxa showed an average recognition rate of 94.7% and an average error rate of 5.5%. The presented system has a flexible framework which easily allows expanding it to include additional taxa in the future. Conclusions The implemented automated microscopy and the new open source image analysis system - PlanktoVision - showed classification results that were comparable or better than existing systems and the exclusion of non-plankton particles could be greatly improved. The software package is published as free software and is available to anyone to help make the analysis of water quality more reproducible and cost effective. KW - Bioinformatik Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-96395 UR - http://www.biomedcentral.com/1471-2105/14/115 ER - TY - JOUR A1 - Dandekar, Thomas A1 - Liang, Chunguang A1 - Krüger, Beate T1 - GoSynthetic database tool to analyse natural and engineered molecular processes JF - Database N2 - An essential topic for synthetic biologists is to understand the structure and function of biological processes and involved proteins and plan experiments accordingly. Remarkable progress has been made in recent years towards this goal. However, efforts to collect and present all information on processes and functions are still cumbersome. The database tool GoSynthetic provides a new, simple and fast way to analyse biological processes applying a hierarchical database. Four different search modes are implemented. Furthermore, protein interaction data, cross-links to organism-specific databases (17 organisms including six model organisms and their interactions), COG/KOG, GO and IntAct are warehoused. The built in connection to technical and engineering terms enables a simple switching between biological concepts and concepts from engineering, electronics and synthetic biology. The current version of GoSynthetic covers more than one million processes, proteins, COGs and GOs. It is illustrated by various application examples probing process differences and designing modifications. KW - Bioinformatik Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-97023 ER - TY - JOUR A1 - Brehm, Klaus A1 - Hemer, Sarah A1 - Konrad, Christian A1 - Spiliotis, Markus A1 - Koziol, Uriel A1 - Schaack, Dominik A1 - Förster, Sabine A1 - Gelmedin, Verena A1 - Stadelmann, Britta A1 - Dandekar, Thomas A1 - Hemphill, Andrew T1 - Host insulin stimulates Echinococcus multilocularis insulin signalling pathways and larval development N2 - Background The metacestode of the tapeworm Echinococcus multilocularis is the causative agent of alveolar echinococcosis, a lethal zoonosis. Infections are initiated through establishment of parasite larvae within the intermediate host’s liver, where high concentrations of insulin are present, followed by tumour-like growth of the metacestode in host organs. The molecular mechanisms determining the organ tropism of E. multilocularis or the influences of host hormones on parasite proliferation are poorly understood. Results Using in vitro cultivation systems for parasite larvae we show that physiological concentrations (10 nM) of human insulin significantly stimulate the formation of metacestode larvae from parasite stem cells and promote asexual growth of the metacestode. Addition of human insulin to parasite larvae led to increased glucose uptake and enhanced phosphorylation of Echinococcus insulin signalling components, including an insulin receptor-like kinase, EmIR1, for which we demonstrate predominant expression in the parasite’s glycogen storage cells. We also characterized a second insulin receptor family member, EmIR2, and demonstrated interaction of its ligand binding domain with human insulin in the yeast two-hybrid system. Addition of an insulin receptor inhibitor resulted in metacestode killing, prevented metacestode development from parasite stem cells, and impaired the activation of insulin signalling pathways through host insulin. Conclusions Our data indicate that host insulin acts as a stimulant for parasite development within the host liver and that E. multilocularis senses the host hormone through an evolutionarily conserved insulin signalling pathway. Hormonal host-parasite cross-communication, facilitated by the relatively close phylogenetic relationship between E. multilocularis and its mammalian hosts, thus appears to be important in the pathology of alveolar echinococcosis. This contributes to a closer understanding of organ tropism and parasite persistence in larval cestode infections. Furthermore, our data show that Echinococcus insulin signalling pathways are promising targets for the development of novel drugs. KW - Cestode KW - Tapeworm KW - Echinococcus KW - Echinococcosis KW - Insulin KW - Receptor kinase KW - Kinase inhibitor KW - Host-parasite interaction Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-110357 ER - TY - INPR A1 - Dandekar, Thomas T1 - Our universe may have started by Qubit decoherence N2 - Our universe may have started by Qubit decoherence: In quantum computers, qubits have all their states undefined during calculation and become defined as output (“decoherence”). We study the transition from an uncontrolled, chaotic quantum vacuum (“before”) to a clearly interacting “real world”. In such a cosmology, the Big Bang singularity is replaced by a condensation event of interacting strings. This triggers a crystallization process. This avoids inflation, not fitting current observations: increasing long-range interactions limit growth and crystal symmetries ensure the same laws of nature and basic symmetries over the whole crystal. Tiny mis-arrangements provide nuclei of superclusters and galaxies and crystal structure allows arrangement of dark (halo regions) and normal matter (galaxy nuclei) for galaxy formation. Crystals come and go: an evolutionary cosmology is explored: entropic forces from the quantum soup “outside” of the crystal try to dissolve it. This corresponds to dark energy and leads to a “big rip” in 70 Gigayears. Selection for best growth and condensation events over generations of crystals favors multiple self-organizing processes within the crystal including life or even conscious observers in our universe. Philosophically this theory shows harmony with nature and replaces absurd perspectives of current cosmology. Independent of cosmology, we suggest that a “real world” (so our everyday macroscopic world) happens only inside a crystal. “Outside” there is wild quantum foam and superposition of all possibilities. In our crystallized world the vacuum no longer boils but is cooled down by the crystallization event, space-time exists and general relativity holds. Vacuum energy becomes 10**20 smaller, exactly as observed in our everyday world. We live in a “solid” state, within a crystal, the n quanta which build our world have all their different m states nicely separated. There are only nm states available for this local “multiverse”. The arrow of entropy for each edge of the crystal forms one fate, one world-line or clear development of our world, while layers of the crystal are different system states. Mathematical leads from loop quantum gravity (LQG) point to required interactions and potentials. Interaction potentials for strings or loop quanta of any dimension allow a solid, decoherent state of quanta challenging to calculate. However, if we introduce here the heuristic that any type of physical interaction of strings corresponds just to a type of calculation, there is already since 1898 the Hurwitz theorem showing that then only 1D, 2D, 4D and 8D (octonions) allow complex or hypercomplex number calculations. No other hypercomplex numbers and hence dimensions or symmetries are possible to allow calculations without yielding divisions by zero. However, the richest solution allowed by the Hurwitz theorem, octonions, is actually the observed symmetry of our universe, E8. Standard physics such as condensation, crystallization and magnetization but also solid-state physics and quantum computing allow us to show an initial mathematical treatment of our new theory by LQG to describe the cosmological state transformations by equations, and, most importantly, point out routes to parametrization of free parameters looking at testable phenomena, experiments and formulas that describe processes of crystallization, protein folding, magnetization, solid-state physics and quantum computing. This is presented here for LQG, for string theory it would be more elegant but was too demanding to be shown here. Note: While my previous Opus server preprint “A new cosmology of a crystallization process (decoherence) from the surrounding quantum soup provides heuristics to unify general relativity and quantum physics by solid state physics” (https://doi.org/10.25972/OPUS-23076) deals with the same topics and basic formulas, this new version is improved: clearer in title, better introduction, more stringent in its mathematics and improved discussion of the implications including quantum computing, hints for parametrization and connections to LQG and other current cosmological efforts. This 5th of June 2021 version is again an OPUS preprint, but this will next be edited for Archives https://arxiv.org. KW - cosmology KW - quantum computing KW - loop quantum gravity KW - qubit KW - decoherence KW - crystallization Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-239181 ER - TY - INPR A1 - Dandekar, Thomas T1 - Why are nature´s constants so fine-tuned? The case for an escalating complex universe N2 - Why is our universe so fine-tuned? In this preprint we discuss that this is not a strange accident but that fine-tuned universes can be considered to be exceedingly large if one counts the number of observable different states (i.e. one aspect of the more general preprint http://www.opus-bayern.de/uni-wuerzburg/volltexte/2009/3353/). Looking at parameter variation for the same set of physical laws simple and complex processes (including life) and worlds in a multiverse are compared in simple examples. Next the anthropocentric principle is extended as many conditions which are generally interpreted anthropocentric only ensure a large space of different system states. In particular, the observed over-tuning beyond the level for our existence is explainable by these system considerations. More formally, the state space for different systems becomes measurable and comparable looking at their output behaviour. We show that highly interacting processes are more complex then Chaitin complexity, the latter denotes processes not compressible by shorter descriptions (Kolomogorov complexity). The complexity considerations help to better study and compare different processes (programs, living cells, environments and worlds) including dynamic behaviour and can be used for model selection in theoretical physics. Moreover, the large size (in terms of different states) of a world allowing complex processes including life can in a model calculation be determined applying discrete histories from quantum spin-loop theory. Nevertheless there remains a lot to be done - hopefully the preprint stimulates further efforts in this area. N2 - Dieses Preprint vertieft einen Aspekt des preprints http://www.opus-bayern.de/uni-wuerzburg/volltexte/2009/3353/, nämlich die Balance zwischen den Konstanten für unsere Naturgesetze. Die Frage nach einer solchen Balance entsteht nur, wenn man sich ein Multiversum mit vielen Alternativen Universen mit anderen Gewichten für die Naturkonstanten vorstellt und dann feststellt, dass diese gerade in unserem Universum optimal für Leben und überhaupt für komplexe, selbst organisierende Strukturen eingestellt sind (sogenanntes fine-tuning). Dies wird häufig mit dem anthropozentrischen Prinzip erklärt. Dies erklärt aber beispielsweise nicht, warum denn dieses fine-tuning noch deutlich feiner und genauer eingestellt ist, als für die Existenz eines Beobachters nötig ist. Wir zeigen dagegen, dass unser Universum besonders komplex ist und einen sehr großen Zustandsraum hat und Bedingungen, die eine hohe Komplexität erlauben, auch einen Beobachter und komplexe Prozesse wie Leben ermöglichen. Allgemein nimmt ein besonders komplexer Zustandsraum den Löwenanteil aller Alternativen ein. Unsere Komplexitätsbetrachtung kann auf verschiedenste Prozesse (Welten, Umwelten, lebende Zellen, Computerprogramme) angewandt werden, hilft bei der Modellauswahl in der theoretischen Physik (Beispiele werden gezeigt) und kann auch direkt ausgerechnet werden, dies wird für eine Modellrechnung zur Quantenschleifentheorie durchgeführt. Dennoch bleibt hier noch viel weitere Arbeit zu leisten, das Preprint kann hier nur einen Anstoß liefern. KW - Natur KW - Naturgesetz KW - Beobachter KW - Kolmogorov-Komplexität KW - Berechnungskomplexität KW - Fundamentalkonstante KW - Nature constants KW - complexity KW - observer KW - fine-tuning KW - multiverse Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-34488 ER - TY - JOUR A1 - Dandekar, Thomas T1 - Olbers' Paradox (peer-reviewed scientific correspondence) N2 - No abstract available Y1 - 1991 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-31672 ER - TY - JOUR A1 - Argos, P. A1 - Dandekar, Thomas T1 - Delineating the main chain topology of four-helix bundle proteins using the genetic algorithm and knowledge based on the amino acid sequence alone N2 - No abstract available KW - Proteine KW - Strukturanalyse KW - Abstandsmessung Y1 - 1994 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-33807 ER - TY - JOUR A1 - Ratzka, Carolin A1 - Förster, Frank A1 - Liang, Chunguang A1 - Kupper, Maria A1 - Dandekar, Thomas A1 - Feldhaar, Heike A1 - Gross, Roy T1 - Molecular characterization of antimicrobial peptide genes of the carpenter ant Camponotus floridanus N2 - The production of antimicrobial peptides (AMPs) is a major defense mechanism against pathogen infestation and of particular importance for insects relying exclusively on an innate immune system. Here, we report on the characterization of three AMPs from the carpenter ant Camponotus floridanus. Due to sequence similarities and amino acid composition these peptides can be classified into the cysteine-rich (e.g. defensin) and glycine-rich (e.g. hymenoptaecin) AMP groups, respectively. The gene and cDNA sequences of these AMPs were established and their expression was shown to be induced by microbial challenge. We characterized two different defensin genes. The defensin-2 gene has a single intron, whereas the defensin-1 gene has two introns. The deduced amino acid sequence of the C. floridanus defensins is very similar to other known ant defensins with the exception of a short C-terminal extension of defensin-1. The hymenoptaecin gene has a single intron and a very peculiar domain structure. The corresponding precursor protein consists of a signal- and a pro-sequence followed by a hymenoptaecin-like domain and six directly repeated hymenoptaecin domains. Each of the hymenoptaecin domains is flanked by an EAEP-spacer sequence and a RR-site known to be a proteolytic processing site. Thus, proteolytic processing of the multipeptide precursor may generate several mature AMPs leading to an amplification of the immune response. Bioinformatical analyses revealed the presence of hymenoptaecin genes with similar multipeptide precursor structure in genomes of other ant species suggesting an evolutionary conserved important role of this gene in ant immunity. KW - Biologie KW - Camponotus floridanus Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-75985 ER -