TY - JOUR A1 - Mitjans, M. A1 - Begemann, M. A1 - Ju, A. A1 - Dere, E. A1 - Wüstefeld, L. A1 - Hofer, S. A1 - Hassouna, I. A1 - Balkenhol, J. A1 - Oliveira, B. A1 - Van der Auwera, S. A1 - Tammer, R. A1 - Hammerschmidt, K. A1 - Völzke, H. A1 - Homuth, G. A1 - Cecconi, F. A1 - Chowdhury, K. A1 - Grabe, H. A1 - Frahm, J. A1 - Boretius, S. A1 - Dandekar, T. A1 - Ehrenreich, H. T1 - Sexual dimorphism of \(AMBRA1\)-related autistic features in human and mouse JF - Translational Psychiatry N2 - \(Ambra1\) is linked to autophagy and neurodevelopment. Heterozygous \(Ambra1\) deficiency induces autism-like behavior in a sexually dimorphic manner. Extraordinarily, autistic features are seen in female mice only, combined with stronger Ambra1 protein reduction in brain compared to males. However, significance of \(AMBRA1\) for autistic phenotypes in humans and, apart from behavior, for other autism-typical features, namely early brain enlargement or increased seizure propensity, has remained unexplored. Here we show in two independent human samples that a single normal \(AMBRA1\) genotype, the intronic SNP rs3802890-AA, is associated with autistic features in women, who also display lower \(AMBRA1\) mRNA expression in peripheral blood mononuclear cells relative to female GG carriers. Located within a non-coding RNA, likely relevant for mRNA and protein interaction, rs3802890 (A versus G allele) may affect its stability through modification of folding, as predicted by \(in\) \(silico\) analysis. Searching for further autism-relevant characteristics in \(Ambra1^{+/−}\) mice, we observe reduced interest of female but not male mutants regarding pheromone signals of the respective other gender in the social intellicage set-up. Moreover, altered pentylentetrazol-induced seizure propensity, an \(in\) \(vivo\) readout of neuronal excitation–inhibition dysbalance, becomes obvious exclusively in female mutants. Magnetic resonance imaging reveals mild prepubertal brain enlargement in both genders, uncoupling enhanced brain dimensions from the primarily female expression of all other autistic phenotypes investigated here. These data support a role of \(AMBRA1/Ambra1\) partial loss-of-function genotypes for female autistic traits. Moreover, they suggest \(Ambra1\) heterozygous mice as a novel multifaceted and construct-valid genetic mouse model for female autism. KW - biology KW - clinical genetics KW - molecular neuroscience Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-173782 VL - 2017 IS - 7 ER -