TY - JOUR A1 - Maierhofer, Anna A1 - Flunkert, Julia A1 - Oshima, Junko A1 - Martin, George M. A1 - Poot, Martin A1 - Nanda, Indrajit A1 - Dittrich, Marcus A1 - Müller, Tobias A1 - Haaf, Thomas T1 - Epigenetic signatures of Werner syndrome occur early in life and are distinct from normal epigenetic aging processes JF - Aging Cell N2 - Werner Syndrome (WS) is an adult‐onset segmental progeroid syndrome. Bisulfite pyrosequencing of repetitive DNA families revealed comparable blood DNA methylation levels between classical (18 WRN‐mutant) or atypical WS (3 LMNA‐mutant and 3 POLD1‐mutant) patients and age‐ and sex‐matched controls. WS was not associated with either age‐related accelerated global losses of ALU, LINE1, and α‐satellite DNA methylations or gains of rDNA methylation. Single CpG methylation was analyzed with Infinium MethylationEPIC arrays. In a correspondence analysis, atypical WS samples clustered together with the controls and were clearly separated from classical WS, consistent with distinct epigenetic pathologies. In classical WS, we identified 659 differentially methylated regions (DMRs) comprising 3,656 CpG sites and 613 RefSeq genes. The top DMR was located in the HOXA4 promoter. Additional DMR genes included LMNA, POLD1, and 132 genes which have been reported to be differentially expressed in WRN‐mutant/depleted cells. DMRs were enriched in genes with molecular functions linked to transcription factor activity and sequence‐specific DNA binding to promoters transcribed by RNA polymerase II. We propose that transcriptional misregulation of downstream genes by the absence of WRN protein contributes to the variable premature aging phenotypes of WS. There were no CpG sites showing significant differences in DNA methylation changes with age between WS patients and controls. Genes with both WS‐ and age‐related methylation changes exhibited a constant offset of methylation between WRN‐mutant patients and controls across the entire analyzed age range. WS‐specific epigenetic signatures occur early in life and do not simply reflect an acceleration of normal epigenetic aging processes. KW - (classical and atypical) Werner syndrome KW - bisulfite pyrosequencing KW - methylation array KW - premature aging KW - segmental progeria KW - transcription deficiency Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-202733 VL - 18 ER - TY - JOUR A1 - Doll, Julia A1 - Vona, Barbara A1 - Schnapp, Linda A1 - Rüschendorf, Franz A1 - Khan, Imran A1 - Khan, Saadullah A1 - Muhammad, Noor A1 - Alam Khan, Sher A1 - Nawaz, Hamed A1 - Khan, Ajmal A1 - Ahmad, Naseer A1 - Kolb, Susanne M. A1 - Kühlewein, Laura A1 - Labonne, Jonathan D. J. A1 - Layman, Lawrence C. A1 - Hofrichter, Michaela A. H. A1 - Röder, Tabea A1 - Dittrich, Marcus A1 - Müller, Tobias A1 - Graves, Tyler D. A1 - Kong, Il-Keun A1 - Nanda, Indrajit A1 - Kim, Hyung-Goo A1 - Haaf, Thomas T1 - Genetic Spectrum of Syndromic and Non-Syndromic Hearing Loss in Pakistani Families JF - Genes N2 - The current molecular genetic diagnostic rates for hereditary hearing loss (HL) vary considerably according to the population background. Pakistan and other countries with high rates of consanguineous marriages have served as a unique resource for studying rare and novel forms of recessive HL. A combined exome sequencing, bioinformatics analysis, and gene mapping approach for 21 consanguineous Pakistani families revealed 13 pathogenic or likely pathogenic variants in the genes GJB2, MYO7A, FGF3, CDC14A, SLITRK6, CDH23, and MYO15A, with an overall resolve rate of 61.9%. GJB2 and MYO7A were the most frequently involved genes in this cohort. All the identified variants were either homozygous or compound heterozygous, with two of them not previously described in the literature (15.4%). Overall, seven missense variants (53.8%), three nonsense variants (23.1%), two frameshift variants (15.4%), and one splice-site variant (7.7%) were observed. Syndromic HL was identified in five (23.8%) of the 21 families studied. This study reflects the extreme genetic heterogeneity observed in HL and expands the spectrum of variants in deafness-associated genes. KW - genetic diagnosis KW - consanguinity KW - genome-wide linkage analysis KW - hearing loss KW - Pakistan KW - exome sequencing Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-219293 SN - 2073-4425 VL - 11 IS - 11 ER -