TY - JOUR A1 - Münch, Miriam A1 - Hsin, Chih-Hsuan A1 - Ferber, Elena A1 - Berger, Susanne A1 - Müller, Martin J. T1 - Reactive electrophilic oxylipins trigger a heat stress-like response through HSFA1 transcription factors JF - Journal of Experimental Botany N2 - Electrophilic oxylipins trigger a heat-shock-like response in the absence of heat through the canonical heat-shock transcription factor A1, thereby helping to cope with stresses associated with protein damage.Abiotic and biotic stresses are often characterized by an induction of reactive electrophile species (RES) such as the jasmonate 12-oxo-phytodienoic acid (OPDA) or the structurally related phytoprostanes. Previously, RES oxylipins have been shown massively to induce heat-shock-response (HSR) genes including HSP101 chaperones. Moreover, jasmonates have been reported to play a role in basal thermotolerance. We show that representative HSR marker genes are strongly induced by RES oxylipins through the four master regulator transcription factors HSFA1a, b, d, and e essential for short-term adaptation to heat stress in Arabidopsis. When compared with Arabidopsis seedlings treated at the optimal acclimation temperature of 37 A degrees C, the exogenous application of RES oxylipins at 20 A degrees C induced a much weaker induction of HSP101 at both the gene and protein expression levels which, however, was not sufficient to confer short-term acquired thermotolerance. Moreover, jasmonate-deficient mutant lines displayed a wild-type-like HSR and were not compromised in acquiring thermotolerance. Hence, the OPDA- and RES oxylipin-induced HSR is not sufficient to protect seedlings from severe heat stress but may help plants to cope better with stresses associated with protein unfolding by inducing a battery of chaperones in the absence of heat. KW - arabidopsis-thaliana KW - shock response KW - gene-expression KW - model KW - acquired thermotolerance KW - 12-oxo-phytodienoic acid KW - thermotolerance KW - plants KW - detoxification KW - acquisition KW - activation KW - heat stress KW - jasmonates KW - phytoprostanes KW - reactive electrophilic species KW - unfolded protein response Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-186766 VL - 67 IS - 21 ER - TY - JOUR A1 - Mantel, Frederick A1 - Müller, Elena A1 - Kleine, Philip A1 - Zimmermann, Marcus A1 - Exner, Florian A1 - Richter, Anne A1 - Weick, Stefan A1 - Ströhle, Serge A1 - Polat, Bülent A1 - Höcht, Stefan A1 - Flentje, Michael T1 - Chemoradiotherapy by intensity-modulated radiation therapy with simultaneous integrated boost in locally advanced or oligometastatic non-small-cell lung cancer-a two center experience JF - Strahlentherapie und Onkologie N2 - Purpose Integrating moderate hypofractionation to the macroscopic tumor with elective nodal irradiation while sparing the organs at risk (OAR) in chemoradiotherapy of locally advanced non-small-cell lung cancer. Methods From 2010-2018, treatment, patient and tumor characteristics of 138 patients from two radiation therapy centers were assessed. Chemoradiotherapy by intensity-modulated radiation therapy (IMRT) with a simultaneous integrated boost (SIB) to the primary tumor and macroscopic lymph node metastases was used. Results A total of 124 (90%) patients received concurrent chemotherapy. 106 (76%) patients had UICC (Union for International Cancer Control) stage ≥IIIB and 21 (15%) patients had an oligometastatic disease (UICC stage IV). Median SIB and elective total dose was 61.6 and 50.4 Gy in 28 fractions, respectively. Furthermore, 64 patients (46%) had an additional sequential boost to the primary tumor after the SIB-IMRT main series: median 6.6 Gy in median 3 fractions. The median cumulative mean lung dose was 15.6 Gy (range 6.2-29.5 Gy). Median follow-up and radiological follow-up for all patients was 18.0 months (range 0.6-86.9) and 16.0 months (range 0.2-86.9), respectively. Actuarial local control rates at 1, 2 and 3 years were 80.4, 68.4 and 57.8%. Median overall survival and progression-free survival was 30.0 months (95% confidence interval [CI] 23.5-36.4) and 12.1 months (95% CI 8.2-16.0), respectively. Treatment-related toxicity was moderate. Radiation-induced pneumonitis grade 2 and grade 3 occurred in 13 (9.8%) and 3 (2.3%) patients. Conclusions Chemoradiotherapy using SIB-IMRT showed promising local tumor control rates and acceptable toxicity in patients with locally advanced and in part oligometastatic lung cancer. The SIB concept, resulting in a relatively low mean lung dose, was associated with low numbers of clinically relevant pneumonitis. The overall survival appears promising in the presence of a majority of patients with UICC stage ≥IIIB disease. KW - local control KW - image-guided radiation therapy KW - thoracic cancer KW - hypofractionation KW - multimodal therapy Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-264821 SN - 1439-099X VL - 197 IS - 5 ER - TY - JOUR A1 - Ferber, Elena A1 - Gerhards, Julian A1 - Sauer, Miriam A1 - Krischke, Markus A1 - Dittrich, Marcus T. A1 - Müller, Tobias A1 - Berger, Susanne A1 - Fekete, Agnes A1 - Mueller, Martin J. T1 - Chemical Priming by Isothiocyanates Protects Against Intoxication by Products of the Mustard Oil Bomb JF - Frontiers in Plant Science N2 - In Brassicaceae, tissue damage triggers the mustard oil bomb i.e., activates the degradation of glucosinolates by myrosinases leading to a rapid accumulation of isothiocyanates at the site of damage. Isothiocyanates are reactive electrophilic species (RES) known to covalently bind to thiols in proteins and glutathione, a process that is not only toxic to herbivores and microbes but can also cause cell death of healthy plant tissues. Previously, it has been shown that subtoxic isothiocyanate concentrations can induce transcriptional reprogramming in intact plant cells. Glutathione depletion by RES leading to breakdown of the redox potential has been proposed as a central and common RES signal transduction mechanism. Using transcriptome analyses, we show that after exposure of Arabidopsis seedlings (grown in liquid culture) to subtoxic concentrations of sulforaphane hundreds of genes were regulated without depletion of the cellular glutathione pool. Heat shock genes were among the most highly up-regulated genes and this response was found to be dependent on the canonical heat shock factors A1 (HSFA1). HSFA1-deficient plants were more sensitive to isothiocyanates than wild type plants. Moreover, pretreatment of Arabidopsis seedlings with subtoxic concentrations of isothiocyanates increased resistance against exposure to toxic levels of isothiocyanates and, hence, may reduce the autotoxicity of the mustard oil bomb by inducing cell protection mechanisms. KW - autotoxicity KW - heat shock response KW - isothiocyanates KW - mustard oil bomb KW - reactive electrophilic species KW - redox homeostasis KW - sulforaphane Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-207104 SN - 1664-462X VL - 11 ER -