TY - JOUR A1 - Srivastava, Mugdha A1 - Bencurova, Elena A1 - Gupta, Shishir K. A1 - Weiss, Esther A1 - Löffler, Jürgen A1 - Dandekar, Thomas T1 - Aspergillus fumigatus challenged by human dendritic cells: metabolic and regulatory pathway responses testify a tight battle JF - Frontiers in Cellular and Infection Microbiology N2 - Dendritic cells (DCs) are antigen presenting cells which serve as a passage between the innate and the acquired immunity. Aspergillosis is a major lethal condition in immunocompromised patients caused by the adaptable saprophytic fungus Aspergillus fumigatus. The healthy human immune system is capable to ward off A. fumigatus infections however immune-deficient patients are highly vulnerable to invasive aspergillosis. A. fumigatus can persist during infection due to its ability to survive the immune response of human DCs. Therefore, the study of the metabolism specific to the context of infection may allow us to gain insight into the adaptation strategies of both the pathogen and the immune cells. We established a metabolic model of A. fumigatus central metabolism during infection of DCs and calculated the metabolic pathway (elementary modes; EMs). Transcriptome data were used to identify pathways activated when A. fumigatus is challenged with DCs. In particular, amino acid metabolic pathways, alternative carbon metabolic pathways and stress regulating enzymes were found to be active. Metabolic flux modeling identified further active enzymes such as alcohol dehydrogenase, inositol oxygenase and GTP cyclohydrolase participating in different stress responses in A. fumigatus. These were further validated by qRT-PCR from RNA extracted under these different conditions. For DCs, we outlined the activation of metabolic pathways in response to the confrontation with A. fumigatus. We found the fatty acid metabolism plays a crucial role, along with other metabolic changes. The gene expression data and their analysis illuminate additional regulatory pathways activated in the DCs apart from interleukin regulation. In particular, Toll-like receptor signaling, NOD-like receptor signaling and RIG-I-like receptor signaling were active pathways. Moreover, we identified subnetworks and several novel key regulators such as UBC, EGFR, and CUL3 of DCs to be activated in response to A. fumigatus. In conclusion, we analyze the metabolic and regulatory responses of A. fumigatus and DCs when confronted with each other. KW - infection KW - dendritic cells KW - Aspergillus fumigalus KW - metabolic modelling KW - signalling Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-201368 VL - 9 ER - TY - JOUR A1 - Löb, Sanja A1 - Linsmeier, Eva A1 - Herbert, Saskia-Laureen A1 - Schlaiß, Tanja A1 - Kiesel, Matthias A1 - Wischhusen, Jörg A1 - Salmen, Jessica A1 - Kranke, Peter A1 - Quenzer, Anne A1 - Kurz, Florian A1 - Weiss, Claire A1 - Gerhard-Hartmann, Elena A1 - Wöckel, Achim A1 - Diessner, Joachim T1 - Prognostic effect of HER2 evolution from primary breast cancer to breast cancer metastases JF - Journal of Cancer Research and Clinical Oncology N2 - Purpose Therapeutic options for breast cancer (BC) treatment are constantly evolving. The Human Epidermal Growth Factor 2 (HER2)-low BC entity is a new subgroup, representing about 55% of all BC patients. New antibody–drug conjugates demonstrated promising results for this BC subgroup. Currently, there is limited information about the conversion of HER2 subtypes between primary tumor and recurrent disease. Methods This retrospective study included women with BC at the University Medical Centre Wuerzburg from 1998 to 2021. Data were retrieved from patients' records. HER2 evolution from primary diagnosis to the first relapse and the development of secondary metastases was investigated. Results In the HR-positive subgroup without HER2 overexpression, HER2-low expression in primary BC was 56.7 vs. 14.6% in the triple-negative subgroup (p < 0.000). In the cohort of the first relapse, HER2-low represented 64.1% of HR-positive vs. 48.2% of the triple-negative cohort (p = 0.03). In patients with secondary metastases, HER2-low was 75.6% vs. 50% in the triple negative subgroup (p = 0.10). The subgroup of HER2-positive breast cancer patients numerically increased in the course of disease; the HER2-negative overall cohort decreased. A loss of HER2 expression from primary BC to the first relapse correlated with a better OS (p = 0.018). No clinicopathological or therapeutic features could be identified as potential risk factors for HER2 conversion. Conclusion HER2 expression is rising during the progression of BC disease. In view of upcoming therapeutical options, the re-analysis of newly developed metastasis will become increasingly important. KW - breast cancer KW - HER2 conversion KW - HER2-low KW - trastuzumab deruxtecan KW - HER2 targeted therapy KW - trastuzumab Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-324068 VL - 149 IS - 8 ER - TY - JOUR A1 - Djakovic, Lara A1 - Hennig, Thomas A1 - Reinisch, Katharina A1 - Milić, Andrea A1 - Whisnant, Adam W. A1 - Wolf, Katharina A1 - Weiß, Elena A1 - Haas, Tobias A1 - Grothey, Arnhild A1 - Jürges, Christopher S. A1 - Kluge, Michael A1 - Wolf, Elmar A1 - Erhard, Florian A1 - Friedel, Caroline C. A1 - Dölken, Lars T1 - The HSV-1 ICP22 protein selectively impairs histone repositioning upon Pol II transcription downstream of genes JF - Nature Communications N2 - Herpes simplex virus 1 (HSV-1) infection and stress responses disrupt transcription termination by RNA Polymerase II (Pol II). In HSV-1 infection, but not upon salt or heat stress, this is accompanied by a dramatic increase in chromatin accessibility downstream of genes. Here, we show that the HSV-1 immediate-early protein ICP22 is both necessary and sufficient to induce downstream open chromatin regions (dOCRs) when transcription termination is disrupted by the viral ICP27 protein. This is accompanied by a marked ICP22-dependent loss of histones downstream of affected genes consistent with impaired histone repositioning in the wake of Pol II. Efficient knock-down of the ICP22-interacting histone chaperone FACT is not sufficient to induce dOCRs in ΔICP22 infection but increases dOCR induction in wild-type HSV-1 infection. Interestingly, this is accompanied by a marked increase in chromatin accessibility within gene bodies. We propose a model in which allosteric changes in Pol II composition downstream of genes and ICP22-mediated interference with FACT activity explain the differential impairment of histone repositioning downstream of genes in the wake of Pol II in HSV-1 infection. KW - herpes virus KW - transcription Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-358161 VL - 14 ER -