TY - JOUR A1 - Hahn, Lukas A1 - Beudert, Matthias A1 - Gutmann, Marcus A1 - Keßler, Larissa A1 - Stahlhut, Philipp A1 - Fischer, Lena A1 - Karakaya, Emine A1 - Lorson, Thomas A1 - Thievessen, Ingo A1 - Detsch, Rainer A1 - Lühmann, Tessa A1 - Luxenhofer, Robert T1 - From Thermogelling Hydrogels toward Functional Bioinks: Controlled Modification and Cytocompatible Crosslinking JF - Macromolecular Bioscience N2 - Hydrogels are key components in bioink formulations to ensure printability and stability in biofabrication. In this study, a well-known Diels-Alder two-step post-polymerization modification approach is introduced into thermogelling diblock copolymers, comprising poly(2-methyl-2-oxazoline) and thermoresponsive poly(2-n-propyl-2-oxazine). The diblock copolymers are partially hydrolyzed and subsequently modified by acid/amine coupling with furan and maleimide moieties. While the thermogelling and shear-thinning properties allow excellent printability, trigger-less cell-friendly Diels-Alder click-chemistry yields long-term shape-fidelity. The introduced platform enables easy incorporation of cell-binding moieties (RGD-peptide) for cellular interaction. The hydrogel is functionalized with RGD-peptides using thiol-maleimide chemistry and cell proliferation as well as morphology of fibroblasts seeded on top of the hydrogels confirm the cell adhesion facilitated by the peptides. Finally, bioink formulations are tested for biocompatibility by incorporating fibroblasts homogenously inside the polymer solution pre-printing. After the printing and crosslinking process good cytocompatibility is confirmed. The established bioink system combines a two-step approach by physical precursor gelation followed by an additional chemical stabilization, offering a broad versatility for further biomechanical adaptation or bioresponsive peptide modification. KW - chemical crosslinking KW - biofabrication KW - bioprinting KW - hydrogels Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-257542 VL - 21 IS - 10 ER - TY - JOUR A1 - Karakaya, Emine A1 - Bider, Faina A1 - Frank, Andreas A1 - Teßmar, Jörg A1 - Schöbel, Lisa A1 - Forster, Leonard A1 - Schrüfer, Stefan A1 - Schmidt, Hans-Werner A1 - Schubert, Dirk Wolfram A1 - Blaeser, Andreas A1 - Boccaccini, Aldo R. A1 - Detsch, Rainer T1 - Targeted printing of cells: evaluation of ADA-PEG bioinks for drop on demand approaches JF - Gels N2 - A novel approach, in the context of bioprinting, is the targeted printing of a defined number of cells at desired positions in predefined locations, which thereby opens up new perspectives for life science engineering. One major challenge in this application is to realize the targeted printing of cells onto a gel substrate with high cell survival rates in advanced bioinks. For this purpose, different alginate-dialdehyde—polyethylene glycol (ADA-PEG) inks with different PEG modifications and chain lengths (1–8 kDa) were characterized to evaluate their application as bioinks for drop on demand (DoD) printing. The biochemical properties of the inks, printing process, NIH/3T3 fibroblast cell distribution within a droplet and shear forces during printing were analyzed. Finally, different hydrogels were evaluated as a printing substrate. By analysing different PEG chain lengths with covalently crosslinked and non-crosslinked ADA-PEG inks, it was shown that the influence of Schiff's bases on the viscosity of the corresponding materials is very low. Furthermore, it was shown that longer polymer chains resulted in less stable hydrogels, leading to fast degradation rates. Several bioinks highly exhibit biocompatibility, while the calculated nozzle shear stress increased from approx. 1.3 and 2.3 kPa. Moreover, we determined the number of cells for printed droplets depending on the initial cell concentration, which is crucially needed for targeted cell printing approaches. KW - bioprinting KW - drop on demand KW - sodium alginate KW - polyethylene glycol KW - shear stress Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-267317 SN - 2310-2861 VL - 8 IS - 4 ER - TY - JOUR A1 - Hazur, Jonas A1 - Detsch, Rainer A1 - Karakaya, Emine A1 - Kaschta, Joachim A1 - Teßmar, Jörg A1 - Schneidereit, Dominik A1 - Friedrich, Oliver A1 - Schubert, Dirk W A1 - Boccaccini, Aldo R T1 - Improving alginate printability for biofabrication: establishment of a universal and homogeneous pre-crosslinking technique JF - Biofabrication N2 - Many different biofabrication approaches as well as a variety of bioinks have been developed by researchers working in the field of tissue engineering. A main challenge for bioinks often remains the difficulty to achieve shape fidelity after printing. In order to overcome this issue, a homogeneous pre-crosslinking technique, which is universally applicable to all alginate-based materials, was developed. In this study, the Young’s Modulus after post-crosslinking of selected hydrogels, as well as the chemical characterization of alginate in terms of M/G ratio and molecular weight, were determined. With our technique it was possible to markedly enhance the printability of a 2% (w/v) alginate solution, without using a higher polymer content, fillers or support structures. 3D porous scaffolds with a height of around 5 mm were printed. Furthermore, the rheological behavior of different pre-crosslinking degrees was studied. Shear forces on cells as well as the flow profile of the bioink inside the printing nozzle during the process were estimated. A high cell viability of printed NIH/3T3 cells embedded in the novel bioink of more than 85% over a time period of two weeks could be observed. KW - alginate KW - bioprinting KW - rheology KW - bioink KW - pre-crosslinking KW - printability KW - shape fidelity Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-254030 VL - 12 IS - 4 ER -