TY - JOUR A1 - Wittmann, Katharina A1 - Sieber, Cornel A1 - von Stengel, Simon A1 - Kohl, Matthias A1 - Freiberger, Ellen A1 - Jakob, Franz A1 - Lell, Michael A1 - Engelke, Klaus A1 - Kemmler, Wolfgang T1 - Impact of whole body electromyostimulation on cardiometabolic risk factors in older women with sarcopenic obesity: the randomized controlled FORMOsA-sarcopenic obesity study JF - Clinical Interventions in Aging N2 - Background: Sarcopenic obesity (SO) is characterized by a combination of low muscle and high fat mass with an additive negative effect of both conditions on cardiometabolic risk. The aim of the study was to determine the effect of whole-body electromyostimulation (WB-EMS) on the metabolic syndrome (MetS) in community-dwelling women aged ≥70 years with SO. Methods: The study was conducted in an ambulatory university setting. Seventy-five community-dwelling women aged ≥70 years with SO living in Northern Bavaria, Germany, were randomly allocated to either 6 months of WB-EMS application with (WB-EMS&P) or without (WB-EMS) dietary supplementation (150 kcal/day, 56% protein) or a non-training control group (CG). WB-EMS included one session of 20 min (85 Hz, 350 µs, 4 s of strain–4 s of rest) per week with moderate-to-high intensity. The primary study endpoint was the MetS Z-score with the components waist circumference (WC), mean arterial pressure (MAP), triglycerides, fasting plasma glucose, and high-density lipoprotein cholesterol (HDL-C); secondary study endpoints were changes in these determining variables. Results: MetS Z-score decreased in both groups; however, changes compared with the CG were significant (P=0.001) in the WB-EMS&P group only. On analyzing the components of the MetS, significant positive effects for both WB-EMS groups (P≤0.038) were identified for MAP, while the WB-EMS group significantly differed for WC (P=0.036), and the WB-EMS&P group significantly differed for HDL-C (P=0.006) from the CG. No significant differences were observed between the WB-EMS groups. Conclusion: The study clearly confirms the favorable effect of WB-EMS application on the MetS in community-dwelling women aged ≥70 years with SO. However, protein-enriched supplements did not increase effects of WB-EMS alone. In summary, we considered this novel technology an effective and safe method to prevent cardiometabolic risk factors and diseases in older women unable or unwilling to exercise conventionally. KW - sarcopenia KW - obesity KW - whole-body electromyostimulation KW - cardiovascular KW - metabolic risk KW - metabolic syndrome KW - community-dwelling KW - older people Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-164930 VL - 11 ER - TY - JOUR A1 - Wehrle, Esther A1 - Liedert, Astrid A1 - Heilmann, Aline A1 - Wehner, Tim A1 - Bindl, Ronny A1 - Fischer, Lena A1 - Haffner-Luntzer, Melanie A1 - Jakob, Franz A1 - Schinke, Thorsten A1 - Amling, Michael A1 - Ignatius, Anita T1 - The impact of low-magnitude high-frequency vibration on fracture healing is profoundly influenced by the oestrogen status in mice JF - Disease Models & Mechanisms N2 - Fracture healing is impaired in aged and osteoporotic individuals. Because adequate mechanical stimuli are able to increase bone formation, one therapeutical approach to treat poorly healing fractures could be the application of whole-body vibration, including low-magnitude high-frequency vibration (LMHFV). We investigated the effects of LMHFV on fracture healing in aged osteoporotic mice. Female C57BL/6NCrl mice (n=96) were either ovariectomised (OVX) or sham operated (non-OVX) at age 41 weeks. When aged to 49 weeks, all mice received a femur osteotomy that was stabilised using an external fixator. The mice received whole-body vibrations (20 minutes/day) with 0.3 g peak-to-peak acceleration and a frequency of 45 Hz. After 10 and 21 days, the osteotomised femurs and intact bones (contra-lateral femurs, lumbar spine) were evaluated using bending-testing, micro-computed tomography (mu CT), histology and gene expression analyses. LMHFV disturbed fracture healing in aged non-OVX mice, with significantly reduced flexural rigidity (-81%) and bone formation (-80%) in the callus. Gene expression analyses demonstrated increased oestrogen receptor β (ERβ, encoded by Esr2) and Sost expression in the callus of the vibrated animals, but decreased β-catenin, suggesting that ERβ might mediate these negative effects through inhibition of osteoanabolic Wnt/β-catenin signalling. In contrast, in OVX mice, LMHFV significantly improved callus properties, with increased flexural rigidity (+ 1398%) and bone formation (+637%), which could be abolished by subcutaneous oestrogen application (0.025 mg oestrogen administered in a 90-day-release pellet). On a molecular level, we found an upregulation of ER alpha in the callus of the vibrated OVX mice, whereas ERβ was unaffected, indicating that ERa might mediate the osteoanabolic response. Our results indicate a major role for oestrogen in the mechanostimulation of fracture healing and imply that LMHFV might only be safe and effective in confined target populations. KW - level mechanical vibrations KW - ovariectomized rats KW - bone formation KW - LMHFV KW - whole body vibration KW - receptor beta KW - replacement therapy KW - osteoblastic cells KW - early stage KW - alpha KW - Wnt KW - fracture healing KW - oestrogen receptor signalling KW - Wnt signalling Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-144700 VL - 8 ER - TY - JOUR A1 - Wehrle, Esther A1 - Liedert, Astrid A1 - Heilmann, Aline A1 - Wehner, Tim A1 - Bindl, Ronny A1 - Fischer, Lena A1 - Haffner-Luntzer, Melanie A1 - Jakob, Franz A1 - Schinke, Thorsten A1 - Amling, Michael A1 - Ignatius, Anita T1 - The impact of low-magnitude high-frequency vibration on fracture healing is profoundly influenced by the oestrogen status in mice JF - Disease Models & Mechanisms N2 - Fracture healing is impaired in aged and osteoporotic individuals. Because adequate mechanical stimuli are able to increase bone formation, one therapeutical approach to treat poorly healing fractures could be the application of whole-body vibration, including low-magnitude high-frequency vibration (LMHFV). We investigated the effects of LMHFV on fracture healing in aged osteoporotic mice. Female C57BL/6NCrl mice (n=96) were either ovariectomised (OVX) or sham operated (non-OVX) at age 41 weeks. When aged to 49 weeks, all mice received a femur osteotomy that was stabilised using an external fixator. The mice received whole-body vibrations (20 minutes/day) with 0.3 G: peak-to-peak acceleration and a frequency of 45 Hz. After 10 and 21 days, the osteotomised femurs and intact bones (contra-lateral femurs, lumbar spine) were evaluated using bending-testing, micro-computed tomography (μCT), histology and gene expression analyses. LMHFV disturbed fracture healing in aged non-OVX mice, with significantly reduced flexural rigidity (-81%) and bone formation (-80%) in the callus. Gene expression analyses demonstrated increased oestrogen receptor β (ERβ, encoded by Esr2) and Sost expression in the callus of the vibrated animals, but decreased β-catenin, suggesting that ERβ might mediate these negative effects through inhibition of osteoanabolic Wnt/β-catenin signalling. In contrast, in OVX mice, LMHFV significantly improved callus properties, with increased flexural rigidity (+1398%) and bone formation (+637%), which could be abolished by subcutaneous oestrogen application (0.025 mg oestrogen administered in a 90-day-release pellet). On a molecular level, we found an upregulation of ERα in the callus of the vibrated OVX mice, whereas ERβ was unaffected, indicating that ERα might mediate the osteoanabolic response. Our results indicate a major role for oestrogen in the mechanostimulation of fracture healing and imply that LMHFV might only be safe and effective in confined target populations. KW - fracture healing KW - LMHFV KW - oestrogen receptor signalling KW - whole-body vibration KW - Wnt-signalling Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-121109 VL - 8 ER - TY - JOUR A1 - Walsh, J. Bernard A1 - Lems, Willem F. A1 - Karras, Dimitrios A1 - Langdahl, Bente L. A1 - Ljunggren, Osten A1 - Fahrleitner-Pammer, Astrid A1 - Barrett, Annabel A1 - Rajzbaum, Gerald A1 - Jakob, Franz A1 - Marin, Fernando T1 - Effectiveness of Teriparatide in Women Over 75 Years of Age with Severe Osteoporosis: 36-Month Results from the European Forsteo Observational Study (EFOS) JF - Calcified Tissue International N2 - This predefined analysis of the European Forsteo Observational Study (EFOS) aimed to describe clinical fracture incidence, back pain, and health-related quality of life (HRQoL) during 18 months of teriparatide treatment and 18 months post-teriparatide in the subgroup of 589 postmenopausal women with osteoporosis aged ≥75 years. Data on clinical fractures, back pain (visual analogue scale, VAS), and HRQoL (EQ-5D) were collected over 36 months. Fracture data were summarized in 6-month intervals and analyzed using logistic regression with repeated measures. A repeated-measures model analyzed changes from baseline in back pain VAS and EQ-VAS. During the 36-month observation period, 87 (14.8 %) women aged ≥75 years sustained a total of 111 new fractures: 37 (33.3 %) vertebral fractures and 74 (66.7 %) nonvertebral fractures. Adjusted odds of fracture was decreased by 80 % in the 30 to <36–month interval compared with the first 6-month interval (P < 0.009). Although the older subgroup had higher back pain scores and poorer HRQoL at baseline than the younger subgroup, both age groups showed significant reductions in back pain and improvements in HRQoL postbaseline. In conclusion, women aged ≥75 years with severe postmenopausal osteoporosis treated with teriparatide in normal clinical practice showed a reduced clinical fracture incidence by 30 months compared with baseline. An improvement in HRQoL and, possibly, an early and significant reduction in back pain were also observed, which lasted for at least 18 months after teriparatide discontinuation when patients were taking other osteoporosis medication. The results should be interpreted in the context of an uncontrolled observational study. KW - teriparatide KW - osteoporosis KW - health-related quality of life KW - fracture KW - back pain KW - age Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-124746 VL - 90 IS - 5 ER - TY - JOUR A1 - Vogt, Marius A1 - Girschick, Hermann A1 - Schweitzer, Tilmann A1 - Benoit, Clemens A1 - Holl-Wieden, Annette A1 - Seefried, Lothar A1 - Jakob, Franz A1 - Hofmann, Christine T1 - Pediatric hypophosphatasia: lessons learned from a retrospective single-center chart review of 50 children JF - Orphanet Journal of Rare Diseases N2 - Background Hypophosphatasia (HPP) is a rare, inherited metabolic disorder caused by loss-of-function mutations in the ALPL gene that encodes the tissue-nonspecific alkaline phosphatase TNAP (ORPHA 436). Its clinical presentation is highly heterogeneous with a remarkably wide-ranging severity. HPP affects patients of all ages. In children HPP-related musculoskeletal symptoms may mimic rheumatologic conditions and diagnosis is often difficult and delayed. To improve the understanding of HPP in children and in order to shorten the diagnostic time span in the future we studied the natural history of the disease in our large cohort of pediatric patients. This single centre retrospective chart review included longitudinal data from 50 patients with HPP diagnosed and followed at the University Children's Hospital Wuerzburg, Germany over the last 25 years. Results The cohort comprises 4 (8%) perinatal, 17 (34%) infantile and 29 (58%) childhood onset HPP patients. Two patients were deceased at the time of data collection. Diagnosis was based on available characteristic clinical symptoms (in 88%), low alkaline phosphatase (AP) activity (in 96%), accumulating substrates of AP (in 58%) and X-ray findings (in 48%). Genetic analysis was performed in 48 patients (31 compound heterozygous, 15 heterozygous, 2 homozygous mutations per patient), allowing investigations on genotype-phenotype correlations. Based on anamnestic data, median age at first clinical symptoms was 3.5 months (min. 0, max. 107), while median time to diagnosis was 13 months (min. 0, max. 103). Common symptoms included: impairment of motor skills (78%), impairment of mineralization (72%), premature loss of teeth (64%), musculoskeletal pain and craniosynostosis (each 64%) and failure to thrive (62%). Up to now 20 patients started medical treatment with Asfotase alfa. Conclusions Reported findings support the clinical perception of HPP being a chronic multi-systemic disease with often delayed diagnosis. Our natural history information provides detailed insights into the prevalence of different symptoms, which can help to improve and shorten diagnostics and thereby lead to an optimised medical care, especially with promising therapeutic options such as enzyme-replacement-therapy with Asfotase alfa in mind. KW - hypophosphatasia KW - alkaline phosphatase KW - asfotase alfa KW - rare bone disease KW - osteomalacia KW - rickets Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-230505 VL - 15 ER - TY - JOUR A1 - Steinert, Andre F. A1 - Weissenberger, Manuel A1 - Kunz, Manuela A1 - Gilbert, Fabian A1 - Ghivizzani, Steven C. A1 - Goebel, Sascha A1 - Jakob, Franz A1 - Nöth, Ulrich A1 - Rudert, Maximilian T1 - Indian hedgehog gene transfer is a chondrogenic inducer of human mesenchymal stem cells N2 - Introduction: To date, no single most-appropriate factor or delivery method has been identified for the purpose of mesenchymal stem cell (MSC)-based treatment of cartilage injury. Therefore, in this study we tested whether gene delivery of the growth factor Indian hedgehog (IHH) was able to induce chondrogenesis in human primary MSCs, and whether it was possible by such an approach to modulate the appearance of chondrogenic hypertrophy in pellet cultures in vitro. Methods: First-generation adenoviral vectors encoding the cDNA of the human IHH gene were created by cre-lox recombination and used alone or in combination with adenoviral vectors, bone morphogenetic protein-2 (Ad.BMP- 2), or transforming growth factor beta-1 (Ad.TGF-b1) to transduce human bone-marrow derived MSCs at 5 × 102 infectious particles/cell. Thereafter, 3 × 105 cells were seeded into aggregates and cultured for 3 weeks in serumfree medium, with untransduced or marker gene transduced cultures as controls. Transgene expressions were determined by ELISA, and aggregates were analysed histologically, immunohistochemically, biochemically and by RT-PCR for chondrogenesis and hypertrophy. Results: IHH, TGF-b1 and BMP-2 genes were equipotent inducers of chondrogenesis in primary MSCs, as evidenced by strong staining for proteoglycans, collagen type II, increased levels of glycosaminoglycan synthesis, and expression of mRNAs associated with chondrogenesis. IHH-modified aggregates, alone or in combination, also showed a tendency to progress towards hypertrophy, as judged by the expression of alkaline phosphatase and stainings for collagen type X and Annexin 5. Conclusion: As this study provides evidence for chondrogenic induction of MSC aggregates in vitro via IHH gene delivery, this technology may be efficiently employed for generating cartilaginous repair tissues in vivo. KW - Medizin Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-75425 ER - TY - JOUR A1 - Steinert, Andre F. A1 - Kunz, Manuela A1 - Prager, Patrick A1 - Göbel, Sascha A1 - Klein-Hitpass, Ludger A1 - Ebert, Regina A1 - Nöth, Ulrich A1 - Jakob, Franz A1 - Gohlke, Frank T1 - Characterization of bursa subacromialis-derived mesenchymal stem cells JF - Stem Cell Research & Therapy N2 - Introduction The bursa subacromialis (BS) provides the gliding mechanism of the shoulder and regenerates itself after surgical removal. Therefore, we explored the presence of mesenchymal stem cells (MSCs) within the human adult BS tissue and characterized the BS cells compared to MSCs from bone marrow (BMSCs) on a molecular level. Methods BS cells were isolated by collagenase digest from BS tissues derived from patients with degenerative rotator cuff tears, and BMSCs were recovered by adherent culture from bone-marrow of patients with osteoarthritis of the hip. BS cells and BMSCs were compared upon their potential to proliferate and differentiate along chondrogenic, osteogenic and adipogenic lineages under specific culture conditions. Expression profiles of markers associated with mesenchymal phenotypes were comparatively evaluated by flow cytometry, immunohistochemistry, and whole genome array analyses. Results BS cells and BMSCs appeared mainly fibroblastic and revealed almost similar surface antigen expression profiles, which was \(CD44^+, CD73^+, CD90^+, CD105^+, CD106^+\),\(STRO-1^+, CD14^−, CD31^−, CD34^− , CD45^−, CD144^−\). Array analyses revealed 1969 genes upregulated and 1184 genes downregulated in BS cells vs. BMSCs, indicating a high level of transcriptome similarity. After 3 weeks of differentiation culture, BS cells and BMSCs showed a similar strong chondrogenic, adipogenic and osteogenic potential, as shown by histological, immunohistochemical and RT-PCR analyses in contrast to the respective negative controls. Conclusions Our in vitro characterizations show that BS cells fulfill all characteristics of mesenchymal stem cells, and therefore merit further attention for the development of improved therapies for various shoulder pathologies. Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-126446 VL - 6 IS - 114 ER - TY - JOUR A1 - Seefried, Lothar A1 - Mueller-Deubert, Sigrid A1 - Schwarz, Thomas A1 - Lind, Thomas A1 - Mentrup, Birgit A1 - Kober, Melanie A1 - Docheva, Denitsa A1 - Liedert, Astrid A1 - Kassem, Moustapha A1 - Ignatius, Anita A1 - Schieker, Matthias A1 - Claes, Lutz A1 - Wilke, Winfried A1 - Jakob, Franz A1 - Ebert, Regina T1 - A small scale cell culture system to analyze mechanobiology using reporter gene constructs and polyurethane dishes N2 - Mechanical forces are translated into biochemical signals and contribute to cell differentiation and phenotype maintenance. Mesenchymal stem cells and their tissuespecific offspring, as osteoblasts and chondrocytes, cells of cardiovascular tissues and lung cells are sensitive to mechanical loading but molecules and mechanisms involved have to be unraveled. It is well established that cellular mechanotransduction is mediated e.g. by activation of the transcription factor SP1 and by kinase signaling cascades resulting in the activation of the AP1 complex. To investigate cellular mechanisms involved in mechanotransduction and to analyze substances, which modulate cellular mechanosensitivity reporter gene constructs, which can be transfected into cells of interest might be helpful. Suitable small-scale bioreactor systems and mechanosensitive reporter gene constructs are lacking. To analyze the molecular mechanisms of mechanotransduction and its crosstalk with biochemically induced signal transduction, AP1 and SP1 luciferase reporter gene constructs were cloned and transfected into various cell lines and primary cells. A newly developed bioreactor and small-scale 24-well polyurethane dishes were used to apply cyclic stretching to the transfected cells. 1 Hz cyclic stretching for 30 min in this system resulted in a significant stimulation of AP1 and SP1 mediated luciferase activity compared to unstimulated cells. In summary we describe a small-scale cell culture/bioreactor system capable of analyzing subcellular crosstalk mechanisms in mechanotransduction, mechanosensitivity of primary cells and of screening the activity of putative mechanosensitizers as new targets, e.g. for the treatment of bone loss caused by both disuse and signal transduction related alterations of mechanotransduction. KW - Bioreaktor KW - Mechanical strain KW - mechanosensitive reporter KW - gene constructs KW - bioreactor Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-68099 ER - TY - JOUR A1 - Seefried, Lothar A1 - Genest, Franca A1 - Baumann, Jasmin A1 - Heidemeier, Anke A1 - Meffert, Rainer A1 - Jakob, Franz T1 - Efficacy of Zoledronic Acid in the Treatment of Nonmalignant Painful Bone Marrow Lesions: A Triple‐Blind, Randomized, Placebo‐Controlled Phase III Clinical Trial (ZoMARS) JF - Journal of Bone and Mineral Research N2 - Bone marrow lesions (BML) represent areas of deteriorated bone structure and metabolism characterized by pronounced water‐equivalent signaling within the trabecular bone on magnetic resonance imaging (MRI). BML are associated with repair mechanisms subsequent to various clinical conditions associated with inflammatory and non‐inflammatory injury to the bone. There is no approved treatment for this condition. Bisphosphonates are known to improve bone stability in osteoporosis and other bone disorders and have been used off‐label to treat BML. A randomized, triple‐blind, placebo‐controlled phase III trial was conducted to assess efficacy and safety of single‐dose zoledronic acid (ZOL) 5 mg iv with vitamin D 1000 IU/d as opposed to placebo with vitamin D 1000 IU/d in 48 patients (randomized 2:1) with BML. Primary efficacy endpoint was reduction of edema volume 6 weeks after treatment as assessed by MRI. After treatment, mean BML volume decreased by 64.53% (±41.92%) in patients receiving zoledronic acid and increased by 14.43% (±150.46%) in the placebo group (p = 0.007). A decrease in BML volume was observed in 76.5% of patients receiving ZOL and in 50% of the patients receiving placebo. Pain level (visual analogue scale [VAS]) and all categories of the pain disability index (PDI) improved with ZOL versus placebo after 6 weeks but reconciled after 6 additional weeks of follow‐up. Six serious adverse events occurred in 5 patients, none of which were classified as related to the study drug. No cases of osteonecrosis or fractures occurred. Therefore, single‐dose zoledronic acid 5 mg iv together with vitamin D may enhance resolution of bone marrow lesions over 6 weeks along with reduction of pain compared with vitamin D supplementation only. KW - bone biology KW - osteoporosis KW - bone marrow lesion/edema KW - bisphosphonates KW - zoledronic acid Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-276368 VL - 37 IS - 3 SP - 420 EP - 427 ER - TY - JOUR A1 - Schmalzl, Jonas A1 - Plumhoff, Piet A1 - Gilbert, Fabian A1 - Gohlke, Frank A1 - Konrads, Christian A1 - Brunner, Ulrich A1 - Jakob, Franz A1 - Ebert, Regina A1 - Steinert, Andre F. T1 - Tendon-derived stem cells from the long head of the biceps tendon JF - Bone & Joint Research N2 - Objectives The long head of the biceps (LHB) is often resected in shoulder surgery and could therefore serve as a cell source for tissue engineering approaches in the shoulder. However, whether it represents a suitable cell source for regenerative approaches, both in the inflamed and non-inflamed states, remains unclear. In the present study, inflamed and native human LHBs were comparatively characterized for features of regeneration. Methods In total, 22 resected LHB tendons were classified into inflamed samples (n = 11) and non-inflamed samples (n = 11). Proliferation potential and specific marker gene expression of primary LHB-derived cell cultures were analyzed. Multipotentiality, including osteogenic, adipogenic, chondrogenic, and tenogenic differentiation potential of both groups were compared under respective lineage-specific culture conditions. Results Inflammation does not seem to affect the proliferation rate of the isolated tendon-derived stem cells (TDSCs) and the tenogenic marker gene expression. Cells from both groups showed an equivalent osteogenic, adipogenic, chondrogenic and tenogenic differentiation potential in histology and real-time polymerase chain reaction (RT-PCR) analysis. Conclusion These results suggest that the LHB tendon might be a suitable cell source for regenerative approaches, both in inflamed and non-inflamed states. The LHB with and without tendinitis has been characterized as a novel source of TDSCs, which might facilitate treatment of degeneration and induction of regeneration in shoulder surgery. KW - biceps tendon KW - tendon-derived stem cell KW - mesenchymal stem cell KW - tissue engineering KW - shoulder Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-200370 VL - 8 IS - 9 ER -