TY - JOUR A1 - Motyka, Marcin A1 - Sęk, Grzegorz A1 - Ryczko, Krzysztof A1 - Dyksik, Mateusz A1 - Weih, Robert A1 - Patriarche, Gilles A1 - Misiewicz, Jan A1 - Kamp, Martin A1 - Höfling, Sven T1 - Interface Intermixing in Type II InAs/GaInAsSb Quantum Wells Designed for Active Regions of Mid-Infrared-Emitting Interband Cascade Lasers JF - Nanoscale Research Letters N2 - The effect of interface intermixing in W-design GaSb/AlSb/InAs/Ga\(_{0.665}\)In\(_{0.335}\)As\(_x\)Sb\(_{1-x}\)/InAs/AlSb/GaSb quantum wells (QWs) has been investigated by means of optical spectroscopy supported by structural data and by band structure calculations. The fundamental optical transition has been detected at room temperature through photoluminescence and photoreflectance measurements and appeared to be blueshifted with increasing As content of the GaInAsSb layer, in contrast to the energy-gap-driven shifts calculated for an ideally rectangular QW profile. The arsenic incorporation into the hole-confining layer affects the material and optical structure also altering the InAs/GaInAsSb interfaces and their degree of intermixing. Based on the analysis of cross-sectional transmission electron microscopy images and energy-dispersive X-ray spectroscopy, we could deduce the composition distribution across the QW layers and hence simulate more realistic confinement potential profiles. For such smoothed interfaces that indicate As-enhanced intermixing, the energy level calculations have been able to reproduce the experimentally obtained trend. KW - FTIR spectroscopy KW - type II GaIn(As)Sb/GaSb KW - QW interface profile KW - intermixing KW - interband cascade lasers KW - EDX spectra Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-136386 VL - 10 IS - 471 ER - TY - JOUR A1 - Dyksik, Mateusz A1 - Motyka, Marcin A1 - Sęk, Grzegorz A1 - Misiewicz, Jan A1 - Dallner, Matthias A1 - Weih, Robert A1 - Kamp, Martin A1 - Höfling, Sven T1 - Submonolayer Uniformity of Type II InAs/GaInSb W-shaped Quantum Wells Probed by Full-Wafer Photoluminescence Mapping in the Mid-infrared Spectral Range JF - Nanoscale Research Letters N2 - The spatial uniformity of GaSb- and InAs substrate-based structures containing type II quantum wells was probed by means of large-scale photoluminescence (PL) mapping realized utilizing a Fourier transform infrared spectrometer. The active region was designed and grown in a form of a W-shaped structure with InAs and GaInSb layers for confinement of electrons and holes, respectively. The PL spectra were recorded over the entire 2-in. wafers, and the parameters extracted from each spectrum, such as PL peak energy position, its linewidth and integrated intensity, were collected in a form of two-dimensional spatial maps. Throughout the analysis of these maps, the wafers' homogeneity and precision of the growth procedure were investigated. A very small variation of PL peak energy over the wafer indicates InAs quantum well width fluctuation of only a fraction of a monolayer and hence extraordinary thickness accuracy, a conclusion further supported by high uniformity of both the emission intensity and PL linewidth. KW - interband cascade lasers KW - fourier transform spectroscopy KW - mid-infrared KW - type II quantum wells KW - spatially resolved photoluminescence Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-139733 VL - 10 IS - 402 ER - TY - JOUR A1 - Wyborski, Paweł A1 - Podemski, Paweł A1 - Wroński, Piotr Andrzej A1 - Jabeen, Fauzia A1 - Höfling, Sven A1 - Sęk, Grzegorz T1 - Electronic and optical properties of InAs QDs grown by MBE on InGaAs metamorphic buffer JF - Materials N2 - We present the optical characterization of GaAs-based InAs quantum dots (QDs) grown by molecular beam epitaxy on a digitally alloyed InGaAs metamorphic buffer layer (MBL) with gradual composition ensuring a redshift of the QD emission up to the second telecom window. Based on the photoluminescence (PL) measurements and numerical calculations, we analyzed the factors influencing the energies of optical transitions in QDs, among which the QD height seems to be dominating. In addition, polarization anisotropy of the QD emission was observed, which is a fingerprint of significant valence states mixing enhanced by the QD confinement potential asymmetry, driven by the decreased strain with increasing In content in the MBL. The barrier-related transitions were probed by photoreflectance, which combined with photoluminescence data and the PL temperature dependence, allowed for the determination of the carrier activation energies and the main channels of carrier loss, identified as the carrier escape to the MBL barrier. Eventually, the zero-dimensional character of the emission was confirmed by detecting the photoluminescence from single QDs with identified features of the confined neutral exciton and biexciton complexes via the excitation power and polarization dependences. KW - molecular beam epitaxy KW - quantum dot KW - metamorphic buffer layer KW - band structure KW - photoluminescence KW - photoreflectance Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-297037 SN - 1996-1944 VL - 15 IS - 3 ER - TY - JOUR A1 - Wroński, Piotr Andrzej A1 - Wyborski, Paweł A1 - Musiał, Anna A1 - Podemski, Paweł A1 - Sęk, Grzegorz A1 - Höfling, Sven A1 - Jabeen, Fauzia T1 - Metamorphic Buffer Layer Platform for 1550 nm Single-Photon Sources Grown by MBE on (100) GaAs Substrate JF - Materials N2 - We demonstrate single-photon emission with a low probability of multiphoton events of 5% in the C-band of telecommunication spectral range of standard silica fibers from molecular beam epitaxy grown (100)-GaAs-based structure with InAs quantum dots (QDs) on a metamorphic buffer layer. For this purpose, we propose and implement graded In content digitally alloyed InGaAs metamorphic buffer layer with maximal In content of 42% and GaAs/AlAs distributed Bragg reflector underneath to enhance the extraction efficiency of QD emission. The fundamental limit of the emission rate for the investigated structures is 0.5 GHz based on an emission lifetime of 1.95 ns determined from time-resolved photoluminescence. We prove the relevance of a proposed technology platform for the realization of non-classical light sources in the context of fiber-based quantum communication applications. KW - single-photon source KW - quantum dots KW - telecommunication spectral range KW - metamorphic buffer layer Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-246145 SN - 1996-1944 VL - 14 IS - 18 ER -