TY - JOUR A1 - Wolf, Karen A1 - Braun, Attila A1 - Haining, Elizabeth J. A1 - Tseng, Yu-Lun A1 - Kraft, Peter A1 - Schuhmann, Michael K. A1 - Gotru, Sanjeev K. A1 - Chen, Wenchun A1 - Hermanns, Heike M. A1 - Stoll, Guido A1 - Lesch, Klaus-Peter A1 - Nieswandt, Bernhard T1 - Partially Defective Store Operated Calcium Entry and Hem(ITAM) Signaling in Platelets of Serotonin Transporter Deficient Mice JF - PLoS One N2 - Background Serotonin (5-hydroxytryptamin, 5-HT) is an indolamine platelet agonist, biochemically derived from tryptophan. 5-HT is secreted from the enterochromaffin cells into the gastrointestinal tract and blood. Blood 5-HT has been proposed to regulate hemostasis by acting as a vasoconstrictor and by triggering platelet signaling through 5-HT receptor 2A (5HTR2A). Although platelets do not synthetize 5-HT, they take 5-HT up from the blood and store it in their dense granules which are secreted upon platelet activation. Objective To identify the molecular composite of the 5-HT uptake system in platelets and elucidate the role of platelet released 5-HT in thrombosis and ischemic stroke. Methods: 5-HT transporter knockout mice (5Htt\(^{-/-}\)) were analyzed in different in vitro and in vivo assays and in a model of ischemic stroke. Results In 5Htt\(^{-/-}\) platelets, 5-HT uptake from the blood was completely abolished and agonist-induced Ca2+ influx through store operated Ca\(^{2+}\) entry (SOCE), integrin activation, degranulation and aggregation responses to glycoprotein VI (GPVI) and C-type lectin-like receptor 2 (CLEC-2) were reduced. These observed in vitro defects in 5Htt\(^{-/-}\) platelets could be normalized by the addition of exogenous 5-HT. Moreover, reduced 5-HT levels in the plasma, an increased bleeding time and the formation of unstable thrombi were observed ex vivo under flow and in vivo in the abdominal aorta and carotid artery of 5Htt\(^{-/-}\) mice. Surprisingly, in the transient middle cerebral artery occlusion (tMCAO) model of ischemic stroke 5Htt\(^{-/-}\) mice showed nearly normal infarct volume and the neurological outcome was comparable to control mice. Conclusion Although secreted platelet 5-HT does not appear to play a crucial role in the development of reperfusion injury after stroke, it is essential to amplify the second phase of platelet activation through SOCE and plays an important role in thrombus stabilization. KW - platelets KW - serotonin KW - integrins KW - blood flow KW - collagens KW - platelet activation KW - platelet aggregation KW - ischemic stroke Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-146399 VL - 11 IS - 1 ER - TY - JOUR A1 - Pham, Mirko A1 - Helluy, Xavier A1 - Kleinschnitz, Christoph A1 - Kraft, Peter A1 - Bartsch, Andreas J. A1 - Jakob, Peter A1 - Nieswandt, Bernhard A1 - Bendszus, Martin A1 - Guido, Stoll T1 - Sustained Reperfusion after Blockade of Glycoprotein-Receptor-Ib in Focal Cerebral Ischemia: An MRI Study at 17.6 Tesla JF - PLoS ONE N2 - Background: Inhibition of early platelet adhesion by blockade of glycoprotein-IB (GPIb) protects mice from ischemic stroke. To elucidate underlying mechanisms in-vivo, infarct development was followed by ultra-high field MRI at 17.6 Tesla. Methods: Cerebral infarction was induced by transient-middle-cerebral-artery-occlusion (tMCAO) for 1 hour in C57/BL6 control mice (N = 10) and mice treated with 100 mg Fab-fragments of the GPIb blocking antibody p0p/B 1 h after tMCAO (N = 10). To control for the effect of reperfusion, additional mice underwent permanent occlusion and received anti-GPIb treatment (N = 6; pMCAO) or remained without treatment (N = 3; pMCAO). MRI 2 h and 24 h after MCAO measured cerebral-blood-flow (CBF) by continuous arterial-spin labelling, the apparent-diffusion-coefficient (ADC), quantitative-T2 and T2-weighted imaging. All images were registered to a standard mouse brain MRI atlas and statistically analysed voxel-wise, and by cortico-subcortical ROI analysis. Results: Anti-GPIb treatment led to a relative increase of postischemic CBF vs. controls in the cortical territory of the MCA (2 h: 44.2 +/- 6.9 ml/100g/min versus 24 h: 60.5 +/- 8.4; p = 0.0012, F((1,18)) = 14.63) after tMCAO. Subcortical CBF 2 h after tMCAO was higher in anti-GPIb treated animals (45.3 +/- 5.9 vs. controls: 33.6 +/- 4.3; p = 0.04). In both regions, CBF findings were clearly related to a lower probability of infarction (Cortex/Subcortex of treated group: 35%/65% vs. controls: 95%/100%) and improved quantitative-T2 and ADC. After pMCAO, anti-GPIb treated mice developed similar infarcts preceded by severe irreversible hypoperfusion as controls after tMCAO indicating dependency of stroke protection on reperfusion. Conclusion: Blockade of platelet adhesion by anti-GPIb-Fab-fragments results in substantially improved CBF early during reperfusion. This finding was in exact spatial correspondence with the prevention of cerebral infarction and indicates in-vivo an increased patency of the microcirculation. Thus, progression of infarction during early ischemia and reperfusion can be mitigated by anti-platelet treatment. KW - Von-Willebrand-factor KW - Experimental stroke KW - Magnetic-resonance KW - Arterial water KW - Brain KW - Perfusion KW - Mice KW - Inflammation KW - Coefficient KW - mechanisms Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-142608 VL - 6 IS - 4 ER - TY - JOUR A1 - Haarmann, Axel A1 - Deiss, Annika A1 - Prochaska, Juergen A1 - Foerch, Christian A1 - Weksler, Babette A1 - Romero, Ignacio A1 - Couraud, Pierre-Olivier A1 - Stoll, Guido A1 - Rieckmann, Peter A1 - Buttmann, Mathias T1 - Evaluation of Soluble Junctional Adhesion Molecule-A as a Biomarker of Human Brain Endothelial Barrier Breakdown N2 - Background: An inducible release of soluble junctional adhesion molecule-A (sJAM-A) under pro-inflammatory conditions was described in cultured non-CNS endothelial cells (EC) and increased sJAM-A serum levels were found to indicate inflammation in non-CNS vascular beds. Here we studied the regulation of JAM-A expression in cultured brain EC and evaluated sJAM-A as a serum biomarker of blood-brain barrier (BBB) function. Methodology/Principal Findings: As previously reported in non-CNS EC types, pro-inflammatory stimulation of primary or immortalized (hCMEC/D3) human brain microvascular EC (HBMEC) induced a redistribution of cell-bound JAM-A on the cell surface away from tight junctions, along with a dissociation from the cytoskeleton. This was paralleled by reduced immunocytochemical staining of occludin and zonula occludens-1 as well as by increased paracellular permeability for dextran 3000. Both a self-developed ELISA test and Western blot analysis detected a constitutive sJAM-A release by HBMEC into culture supernatants, which importantly was unaffected by pro-inflammatory or hypoxia/reoxygenation challenge. Accordingly, serum levels of sJAM-A were unaltered in 14 patients with clinically active multiple sclerosis compared to 45 stable patients and remained unchanged in 13 patients with acute ischemic non-small vessel stroke over time. Conclusion: Soluble JAM-A was not suited as a biomarker of BBB breakdown in our hands. The unexpected non-inducibility of sJAM-A release at the human BBB might contribute to a particular resistance of brain EC to inflammatory stimuli, protecting the CNS compartment. KW - Biomarker KW - Gehirn Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-68468 ER - TY - JOUR A1 - Kraft, Peter A1 - Schwarz, Tobias A1 - Meijers, Joost C. M. A1 - Stoll, Guido A1 - Kleinschnitz, Christoph T1 - Thrombin-Activatable Fibrinolysis Inhibitor (TAFI) Deficient Mice Are Susceptible to Intracerebral Thrombosis and Ischemic Stroke N2 - Background: Thrombus formation is a key step in the pathophysiology of acute ischemic stroke and results from the activation of the coagulation cascade. Thrombin plays a central role in this coagulation system and contributes to thrombus stability via activation of thrombin-activatable fibrinolysis inhibitor (TAFIa). TAFIa counteracts endogenous fibrinolysis at different stages and elevated TAFI levels are a risk factor for thrombotic events including ischemic stroke. Although substantial in vitro data on the influence of TAFI on the coagulation-fibrinolysis-system exist, investigations on the consequences of TAFI inhibition in animal models of cerebral ischemia are still lacking. In the present study we analyzed stroke development and post stroke functional outcome in TAFI-/- mice. Methodology/Principal Findings: TAFI-/- mice and wild-type controls were subjected to 60 min transient middle cerebral artery occlusion (tMCAO) using the intraluminal filament method. After 24 hours, functional outcome scores were assessed and infarct volumes weremeasured from 2,3,5-Triphenyltetrazoliumchloride (TTC)-stained brain slices. Hematoxylin and eosin (H&E) staining was used to estimate the extent of neuronal cell damage. Thrombus formation within the infarcted brain areas was analyzed by immunoblot. Infarct volumes and functional outcomes did not significantly differ between TAFI-/- mice and controls (p.0.05). Histology revealed extensive ischemic neuronal damage regularly including the cortex and the basal ganglia in both groups. TAFI deficiency also had no influence on intracerebral fibrin(ogen) formation after tMCAO. Conclusion: Our study shows that TAFI does not play a major role for thrombus formation and neuronal degeneration after ischemic brain challenge. KW - Thrombus Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-68519 ER - TY - JOUR A1 - Kraft, Peter A1 - Benz, Peter Michael A1 - Austinat, Madeleine A1 - Brede, Marc Elmar A1 - Schuh, Kai A1 - Walter, Ulrich A1 - Stoll, Guido A1 - Kleinschnitz, Christoph T1 - Deficiency of Vasodilator-Stimulated Phosphoprotein (VASP) Increases Blood-Brain-Barrier Damage and Edema Formation after Ischemic Stroke in Mice N2 - Background: Stroke-induced brain edema formation is a frequent cause of secondary infarct growth and deterioration of neurological function. The molecular mechanisms underlying edema formation after stroke are largely unknown. Vasodilator-stimulated phosphoprotein (VASP) is an important regulator of actin dynamics and stabilizes endothelial barriers through interaction with cell-cell contacts and focal adhesion sites. Hypoxia has been shown to foster vascular leakage by downregulation of VASP in vitro but the significance of VASP for regulating vascular permeability in the hypoxic brain in vivo awaits clarification. Methodology/Principal Findings: Focal cerebral ischemia was induced in Vasp2/2 mice and wild-type (WT) littermates by transient middle cerebral artery occlusion (tMCAO). Evan’s Blue tracer was applied to visualize the extent of blood-brainbarrier (BBB) damage. Brain edema formation and infarct volumes were calculated from 2,3,5-triphenyltetrazolium chloride (TTC)-stained brain slices. Both mouse groups were carefully controlled for anatomical and physiological parameters relevant for edema formation and stroke outcome. BBB damage (p,0.05) and edema volumes (1.7 mm360.5 mm3 versus 0.8 mm360.4 mm3; p,0.0001) were significantly enhanced in Vasp2/2 mice compared to controls on day 1 after tMCAO. This was accompanied by a significant increase in infarct size (56.1 mm3617.3 mm3 versus 39.3 mm3610.7 mm3, respectively; p,0.01) and a non significant trend (p.0.05) towards worse neurological outcomes. Conclusion: Our study identifies VASP as critical regulator of BBB maintenance during acute ischemic stroke. Therapeutic modulation of VASP or VASP-dependent signalling pathways could become a novel strategy to combat excessive edema formation in ischemic brain damage. KW - Vasodilatator-stimuliertes Phosphoprotein KW - Vasodilator-Stimulated Phosphoprotein Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-68522 ER - TY - JOUR A1 - Kleinschnitz, Christoph A1 - Grund, Henrike A1 - Wingler, Kirstin A1 - Armitage, Melanie E. A1 - Jones, Emma A1 - Mittal, Manish A1 - Barit, David A1 - Schwarz, Tobias A1 - Geis, Christian A1 - Kraft, Peter A1 - Barthel, Konstanze A1 - Schuhmann, Michael K. A1 - Herrmann, Alexander M. A1 - Meuth, Sven G. A1 - Stoll, Guido A1 - Meurer, Sabine A1 - Schrewe, Anja A1 - Becker, Lore A1 - Gailus-Durner, Valerie A1 - Fuchs, Helmut A1 - Klopstock, Thomas A1 - de Angelis, Martin Hrabe A1 - Jandeleit-Dahm, Karin A1 - Shah, Ajay M. A1 - Weissmann, Norbert A1 - Schmidt, Harald H. H. W. T1 - Post-Stroke Inhibition of Induced NADPH Oxidase Type 4 Prevents Oxidative Stress and Neurodegeneration N2 - Ischemic stroke is the second leading cause of death worldwide. Only one moderately effective therapy exists, albeit with contraindications that exclude 90% of the patients. This medical need contrasts with a high failure rate of more than 1,000 pre-clinical drug candidates for stroke therapies. Thus, there is a need for translatable mechanisms of neuroprotection and more rigid thresholds of relevance in pre-clinical stroke models. One such candidate mechanism is oxidative stress. However, antioxidant approaches have failed in clinical trials, and the significant sources of oxidative stress in stroke are unknown. We here identify NADPH oxidase type 4 (NOX4) as a major source of oxidative stress and an effective therapeutic target in acute stroke. Upon ischemia, NOX4 was induced in human and mouse brain. Mice deficient in NOX4 (Nox42/2) of either sex, but not those deficient for NOX1 or NOX2, were largely protected from oxidative stress, blood-brain-barrier leakage, and neuronal apoptosis, after both transient and permanent cerebral ischemia. This effect was independent of age, as elderly mice were equally protected. Restoration of oxidative stress reversed the stroke-protective phenotype in Nox42/2 mice. Application of the only validated low-molecular-weight pharmacological NADPH oxidase inhibitor, VAS2870, several hours after ischemia was as protective as deleting NOX4. The extent of neuroprotection was exceptional, resulting in significantly improved long-term neurological functions and reduced mortality. NOX4 therefore represents a major source of oxidative stress and novel class of drug target for stroke therapy. KW - Schlaganfall Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-68416 ER - TY - JOUR A1 - Weise, Gesa A1 - Stoll, Guido T1 - Magnetic resonance imaging of blood brain/nerve barrier dysfunction and leukocyte infiltration: closely related or discordant? JF - Frontiers in Neurology N2 - Unlike other organs the nervous system is secluded from the rest of the organism by the blood brain barrier (BBB) or blood nerve barrier (BNB) preventing passive influx of fluids from the circulation. Similarly, leukocyte entry to the nervous system is tightly controlled. Breakdown of these barriers and cellular inflammation are hallmarks of inflammatory as well as ischemic neurological diseases and thus represent potential therapeutic targets. The spatiotemporal relationship between BBB/BNB disruption and leukocyte infiltration has been a matter of debate. We here review contrast-enhanced magnetic resonance imaging (MRI) as a non-invasive tool to depict barrier dysfunction and its relation to macrophage infiltration in the central and peripheral nervous system under pathological conditions. Novel experimental contrast agents like Gadofluorine M (Gf) allow more sensitive assessment of BBB dysfunction than conventional Gadolinium (Gd)-DTPA enhanced MRI. In addition, Gf facilitates visualization of functional and transient alterations of the BBB remote from lesions. Cellular contrast agents such as superparamagnetic iron oxide particles (SPIO) and perfluorocarbons enable assessment of leukocyte (mainly macrophage) infiltration by MR technology. Combined use of these MR contrast agents disclosed that leukocytes can enter the nervous system independent from a disturbance of the BBB, and vice versa, a dysfunctional BBB/BNB by itself is not sufficient to attract inflammatory cells from the circulation. We will illustrate these basic imaging findings in animal models of multiple sclerosis, cerebral ischemia, and traumatic nerve injury and review corresponding findings in patients. KW - contrast-enhanced MRI KW - neuroinflammation KW - gadolinium-DTPA KW - gadofluorine KW - iron oxide nanoparticles KW - blood brain barrier Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-123359 VL - 3 IS - 178 ER - TY - JOUR A1 - Kraft, Peter A1 - Drechsler, Christiane A1 - Gunreben, Ignaz A1 - Nieswandt, Bernhard A1 - Stoll, Guido A1 - Heuschmann, Peter Ulrich A1 - Kleinschnitz, Christoph T1 - Von Willebrand Factor Regulation in Patients with Acute and Chronic Cerebrovascular Disease: A Pilot, Case-Control Study JF - PLoS ONE N2 - Background and Purpose In animal models, von Willebrand factor (VWF) is involved in thrombus formation and propagation of ischemic stroke. However, the pathophysiological relevance of this molecule in humans, and its potential use as a biomarker for the risk and severity of ischemic stroke remains unclear. This study had two aims: to identify predictors of altered VWF levels and to examine whether VWF levels differ between acute cerebrovascular events and chronic cerebrovascular disease (CCD). Methods A case–control study was undertaken between 2010 and 2013 at our University clinic. In total, 116 patients with acute ischemic stroke (AIS) or transitory ischemic attack (TIA), 117 patients with CCD, and 104 healthy volunteers (HV) were included. Blood was taken at days 0, 1, and 3 in patients with AIS or TIA, and once in CCD patients and HV. VWF serum levels were measured and correlated with demographic and clinical parameters by multivariate linear regression and ANOVA. Results Patients with CCD (158±46%) had significantly higher VWF levels than HV (113±36%, P<0.001), but lower levels than AIS/TIA patients (200±95%, P<0.001). Age, sex, and stroke severity influenced VWF levels (P<0.05). Conclusions VWF levels differed across disease subtypes and patient characteristics. Our study confirms increased VWF levels as a risk factor for cerebrovascular disease and, moreover, suggests that it may represent a potential biomarker for stroke severity, warranting further investigation. KW - cerebrovascular diseases KW - sex addiction KW - biomarkers KW - ischemic stroke KW - blood KW - stroke KW - platelets KW - demography Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-119588 SN - 1932-6203 VL - 9 IS - 6 ER - TY - JOUR A1 - Weise, Gesa A1 - Basse-Lüsebrink, Thomas C. A1 - Kleinschnitz, Christoph A1 - Kampf, Thomas A1 - Jakob, Peter M. A1 - Stoll, Guido T1 - In Vivo Imaging of Stepwise Vessel Occlusion in Cerebral Photothrombosis of Mice by \(^{19}\)F MRI JF - PLoS One N2 - Background \(^{19}\)F magnetic resonance imaging (MRI) was recently introduced as a promising technique for in vivo cell tracking. In the present study we compared \(^{19}\)F MRI with iron-enhanced MRI in mice with photothrombosis (PT) at 7 Tesla. PT represents a model of focal cerebral ischemia exhibiting acute vessel occlusion and delayed neuroinflammation. Methods/Principal Findings Perfluorocarbons (PFC) or superparamagnetic iron oxide particles (SPIO) were injected intravenously at different time points after photothrombotic infarction. While administration of PFC directly after PT induction led to a strong \(^{19}\)F signal throughout the entire lesion, two hours delayed application resulted in a rim-like \(^{19}\)F signal at the outer edge of the lesion. These findings closely resembled the distribution of signal loss on T2-weighted MRI seen after SPIO injection reflecting intravascular accumulation of iron particles trapped in vessel thrombi as confirmed histologically. By sequential administration of two chemically shifted PFC compounds 0 and 2 hours after illumination the different spatial distribution of the \(^{19}\)F markers (infarct core/rim) could be visualized in the same animal. When PFC were applied at day 6 the fluorine marker was only detected after long acquisition times ex vivo. SPIO-enhanced MRI showed slight signal loss in vivo which was much more prominent ex vivo indicative for neuroinflammation at this late lesion stage. Conclusion Our study shows that vessel occlusion can be followed in vivo by \(^{19}\)F and SPIO-enhanced high-field MRI while in vivo imaging of neuroinflammation remains challenging. The timing of contrast agent application was the major determinant of the underlying processes depicted by both imaging techniques. Importantly, sequential application of different PFC compounds allowed depiction of ongoing vessel occlusion from the core to the margin of the ischemic lesions in a single MRI measurement. KW - in vivo imaging KW - magnetic resonance imaging KW - macrophages KW - emulsions KW - infarction KW - fluorine KW - prefrontal cortex KW - developmental signaling Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-137792 VL - 6 IS - 12 ER - TY - JOUR A1 - Essig, Fabian A1 - Babilon, Lilith A1 - Vollmuth, Christoph A1 - Kollikowski, Alexander M. A1 - Pham, Mirko A1 - Solymosi, László A1 - Haeusler, Karl Georg A1 - Kraft, Peter A1 - Stoll, Guido A1 - Schuhmann, Michael K. T1 - High mobility group box 1 protein in cerebral thromboemboli JF - International Journal of Molecular Sciences N2 - High-mobility group box 1 protein (HMGB1) is a damage-associated molecular pattern (DAMP) involved in neutrophil extracellular trap (NET) formation and thrombosis. NETs are regularly found in cerebral thromboemboli. We here analyzed associated HMGB1 expression in human thromboemboli retrieved via mechanical thrombectomy from 37 stroke patients with large vessel occlusion. HMGB1 was detected in all thromboemboli, accounting for 1.7% (IQR 0.6–6.2%) of the total thromboemboli area and was found to be colocalized with neutrophils and NETs and in spatial proximity to platelets. Correlation analysis revealed that the detection of HMGB1 was strongly related to the number of neutrophils (r = 0.58, p = 0.0002) and platelets (r = 0.51, p = 0.001). Our results demonstrate that HMGB1 is a substantial constituent of thromboemboli causing large vessel occlusion stroke. KW - acute ischemic stroke KW - thromboemboli KW - HMGB1 KW - neutrophils KW - platelets KW - immunohistochemistry Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-265568 SN - 1422-0067 VL - 22 IS - 20 ER - TY - JOUR A1 - Schuhmann, Michael K. A1 - Stoll, Guido A1 - Papp, Lena A1 - Bohr, Arne A1 - Volkmann, Jens A1 - Fluri, Felix T1 - Electrical stimulation of the mesencephalic locomotor region has no impact on blood–brain barrier alterations after cerebral photothrombosis in rats JF - International Journal of Molecular Science N2 - Blood–brain barrier (BBB) disruption is a critical event after ischemic stroke, which results in edema formation and hemorrhagic transformation of infarcted tissue. BBB dysfunction following stroke is partly mediated by proinflammatory agents. We recently have shown that high frequency stimulation of the mesencephalic locomotor region (MLR-HFS) exerts an antiapoptotic and anti-inflammatory effect in the border zone of cerebral photothrombotic stroke in rats. Whether MLR-HFS also has an impact on BBB dysfunction in the early stage of stroke is unknown. In this study, rats were subjected to photothrombotic stroke of the sensorimotor cortex and implantation of a stimulating microelectrode into the ipsilesional MLR. Thereafter, either HFS or sham stimulation of the MLR was applied for 24 h. After scarifying the rats, BBB disruption was assessed by determining albumin extravasation and tight junction integrity (claudin 3, claudin 5, and occludin) using Western blot analyses and immunohistochemistry. In addition, by applying zymography, expression of pro-metalloproteinase-9 (pro-MMP-9) was analyzed. No differences were found regarding infarct size and BBB dysfunction between stimulated and unstimulated animals 24 h after induction of stroke. Our results indicate that MLR-HFS neither improves nor worsens the damaged BBB after stroke. Attenuating cytokines/chemokines in the perilesional area, as mediated by MLR-HFS, tend to play a less significant role in preventing the BBB integrity. KW - photothrombotic stroke KW - deep brain stimulation KW - mesencephalic locomotor region KW - blood-brain barrier KW - tight junctions Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-201284 SN - 1422-0067 VL - 20 IS - 16 ER - TY - JOUR A1 - Traub, Jan A1 - Otto, Markus A1 - Sell, Roxane A1 - Göpfert, Dennis A1 - Homola, György A1 - Steinacker, Petra A1 - Oeckl, Patrick A1 - Morbach, Caroline A1 - Frantz, Stefan A1 - Pham, Mirko A1 - Störk, Stefan A1 - Stoll, Guido A1 - Frey, Anna T1 - Serum phosphorylated tau protein 181 and neurofilament light chain in cognitively impaired heart failure patients JF - Alzheimer's Research & Therapy N2 - Background Chronic heart failure (HF) is known to increase the risk of developing Alzheimer’s dementia significantly. Thus, detecting and preventing mild cognitive impairment, which is common in patients with HF, is of great importance. Serum biomarkers are increasingly used in neurological disorders for diagnostics, monitoring, and prognostication of disease course. It remains unclear if neuronal biomarkers may help detect cognitive impairment in this high-risk population. Also, the influence of chronic HF and concomitant renal dysfunction on these biomarkers is not well understood. Methods Within the monocentric Cognition.Matters-HF study, we quantified the serum levels of phosphorylated tau protein 181 (pTau) and neurofilament light chain (NfL) of 146 extensively phenotyped chronic heart failure patients (aged 32 to 85 years; 15.1% women) using ultrasensitive bead-based single-molecule immunoassays. The clinical work-up included advanced cognitive testing and cerebral magnetic resonance imaging (MRI). Results Serum concentrations of NfL ranged from 5.4 to 215.0 pg/ml (median 26.4 pg/ml) and of pTau from 0.51 to 9.22 pg/ml (median 1.57 pg/ml). We detected mild cognitive impairment (i.e., T-score < 40 in at least one cognitive domain) in 60% of heart failure patients. pTau (p = 0.014), but not NfL, was elevated in this group. Both NfL (ρ = − 0.21; p = 0.013) and pTau (ρ = − 0.25; p = 0.002) related to the cognitive domain visual/verbal memory, as well as white matter hyperintensity volume and cerebral and hippocampal atrophy. In multivariable analysis, both biomarkers were independently influenced by age (T = 4.6 for pTau; T = 5.9 for NfL) and glomerular filtration rate (T = − 2.4 for pTau; T = − 3.4 for NfL). Markers of chronic heart failure, left atrial volume index (T = 4.6) and NT-proBNP (T = 2.8), were further cardiological determinants of pTau and NfL, respectively. In addition, pTau was also strongly affected by serum creatine kinase levels (T = 6.5) and ferritin (T = − 3.1). Conclusions pTau and NfL serum levels are strongly influenced by age-dependent renal and cardiac dysfunction. These findings point towards the need for longitudinal examinations and consideration of frequent comorbidities when using neuronal serum biomarkers. KW - Alzheimer’s dementia KW - heart failure KW - cognitive impairment KW - neurofilament light chain KW - phosphorylated tau protein KW - renal function KW - age Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-300515 VL - 14 ER - TY - JOUR A1 - Schuhmann, Michael K. A1 - Papp, Lena A1 - Stoll, Guido A1 - Blum, Robert A1 - Volkmann, Jens A1 - Fluri, Felix T1 - Mesencephalic electrical stimulation reduces neuroinflammation after photothrombotic stroke in rats by targeting the cholinergic anti-inflammatory pathway JF - International Journal of Molecular Sciences N2 - Inflammation is crucial in the pathophysiology of stroke and thus a promising therapeutic target. High-frequency stimulation (HFS) of the mesencephalic locomotor region (MLR) reduces perilesional inflammation after photothrombotic stroke (PTS). However, the underlying mechanism is not completely understood. Since distinct neural and immune cells respond to electrical stimulation by releasing acetylcholine, we hypothesize that HFS might trigger the cholinergic anti-inflammatory pathway via activation of the α7 nicotinic acetylcholine receptor (α7nAchR). To test this hypothesis, rats underwent PTS and implantation of a microelectrode into the MLR. Three hours after intervention, either HFS or sham-stimulation of the MLR was applied for 24 h. IFN-γ, TNF-α, and IL-1α were quantified by cytometric bead array. Choline acetyltransferase (ChAT)\(^+\) CD4\(^+\)-cells and α7nAchR\(^+\)-cells were quantified visually using immunohistochemistry. Phosphorylation of NFĸB, ERK1/2, Akt, and Stat3 was determined by Western blot analyses. IFN-γ, TNF-α, and IL-1α were decreased in the perilesional area of stimulated rats compared to controls. The number of ChAT\(^+\) CD4\(^+\)-cells increased after MLR-HFS, whereas the amount of α7nAchR\(^+\)-cells was similar in both groups. Phospho-ERK1/2 was reduced significantly in stimulated rats. The present study suggests that MLR-HFS may trigger anti-inflammatory processes within the perilesional area by modulating the cholinergic system, probably via activation of the α7nAchR. KW - photothrombotic stroke KW - deep brain stimulation KW - mesencephalic locomotor region KW - neuroinflammation KW - choline acetyltransferase KW - alpha-7 nicotinic acetylcholine receptor Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-259099 SN - 1422-0067 VL - 22 IS - 3 ER - TY - JOUR A1 - Schuhmann, Michael K. A1 - Stoll, Guido A1 - Bohr, Arne A1 - Volkmann, Jens A1 - Fluri, Felix T1 - Electrical stimulation of the mesencephalic locomotor region attenuates neuronal loss and cytokine expression in the perifocal region of photothrombotic stroke in rats JF - International Journal of Molecular Science N2 - Deep brain stimulation of the mesencephalic locomotor region (MLR) improves the motor symptoms in Parkinson’s disease and experimental stroke by intervening in the motor cerebral network. Whether high-frequency stimulation (HFS) of the MLR is involved in non-motor processes, such as neuroprotection and inflammation in the area surrounding the photothrombotic lesion, has not been elucidated. This study evaluates whether MLR-HFS exerts an anti-apoptotic and anti-inflammatory effect on the border zone of cerebral photothrombotic stroke. Rats underwent photothrombotic stroke of the right sensorimotor cortex and the implantation of a microelectrode into the ipsilesional MLR. After intervention, either HFS or sham stimulation of the MLR was applied for 24 h. The infarct volumes were calculated from consecutive brain sections. Neuronal apoptosis was analyzed by TUNEL staining. Flow cytometry and immunohistochemistry determined the perilesional inflammatory response. Neuronal apoptosis was significantly reduced in the ischemic penumbra after MLR-HFS, whereas the infarct volumes did not differ between the groups. MLR-HFS significantly reduced the release of cytokines and chemokines within the ischemic penumbra. MLR-HFS is neuroprotective and it reduces pro-inflammatory mediators in the area that surrounds the photothrombotic stroke without changing the number of immune cells, which indicates that MLR-HFS enables the function of inflammatory cells to be altered on a molecular level. KW - photothrombotic stroke KW - deep brain stimulation KW - mesencephalic locomotor region KW - neuroprotection KW - neuronal apoptosis KW - neuroinflammation Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-201355 SN - 1422-0067 VL - 20 IS - 9 ER - TY - JOUR A1 - Haarmann, Axel A1 - Vollmuth, Christoph A1 - Kollikowski, Alexander M. A1 - Heuschmann, Peter U. A1 - Pham, Mirko A1 - Stoll, Guido A1 - Neugebauer, Hermann A1 - Schuhmann, Michael K. T1 - Vasoactive soluble endoglin: a novel biomarker indicative of reperfusion after cerebral large-vessel occlusion JF - Cells N2 - Now that mechanical thrombectomy has substantially improved outcomes after large-vessel occlusion stroke in up to every second patient, futile reperfusion wherein successful recanalization is not followed by a favorable outcome is moving into focus. Unfortunately, blood-based biomarkers, which identify critical stages of hemodynamically compromised yet reperfused tissue, are lacking. We recently reported that hypoxia induces the expression of endoglin, a TGF-β co-receptor, in human brain endothelium in vitro. Subsequent reoxygenation resulted in shedding. Our cell model suggests that soluble endoglin compromises the brain endothelial barrier function. To evaluate soluble endoglin as a potential biomarker of reperfusion (-injury) we analyzed its concentration in 148 blood samples of patients with acute stroke due to large-vessel occlusion. In line with our in vitro data, systemic soluble endoglin concentrations were significantly higher in patients with successful recanalization, whereas hypoxia alone did not induce local endoglin shedding, as analyzed by intra-arterial samples from hypoxic vasculature. In patients with reperfusion, higher concentrations of soluble endoglin additionally indicated larger infarct volumes at admission. In summary, we give translational evidence that the sequence of hypoxia and subsequent reoxygenation triggers the release of vasoactive soluble endoglin in large-vessel occlusion stroke and can serve as a biomarker for severe ischemia with ensuing recanalization/reperfusion. KW - endoglin KW - brain endothelium KW - stroke KW - shedding KW - mechanical thrombectomy KW - hypoxia KW - reperfusion injury KW - biomarker Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-304995 SN - 2073-4409 VL - 12 IS - 2 ER - TY - JOUR A1 - Haarmann, Axel A1 - Schuhmann, Michael K. A1 - Silwedel, Christine A1 - Monoranu, Camelia-Maria A1 - Stoll, Guido A1 - Buttmann, Mathias T1 - Human brain endothelial CXCR2 is inflammation-inducible and mediates CXCL5- and CXCL8-triggered paraendothelial barrier breakdown JF - International Journal of Molecular Science N2 - Chemokines (C-X-C) motif ligand (CXCL) 5 and 8 are overexpressed in patients with multiple sclerosis, where CXCL5 serum levels were shown to correlate with blood–brain barrier dysfunction as evidenced by gadolinium-enhanced magnetic resonance imaging. Here, we studied the potential role of CXCL5/CXCL8 receptor 2 (CXCR2) as a regulator of paraendothelial brain barrier function, using the well-characterized human cerebral microvascular endothelial cell line hCMEC/D3. Low basal CXCR2 mRNA and protein expression levels in hCMEC/D3 were found to strongly increase under inflammatory conditions. Correspondingly, immunohistochemistry of brain biopsies from two patients with active multiple sclerosis revealed upregulation of endothelial CXCR2 compared to healthy control tissue. Recombinant CXCL5 or CXCL8 rapidly and transiently activated Akt/protein kinase B in hCMEC/D3. This was followed by a redistribution of tight junction-associated protein zonula occludens-1 (ZO-1) and by the formation of actin stress fibers. Functionally, these morphological changes corresponded to a decrease of paracellular barrier function, as measured by a real-time electrical impedance-sensing system. Importantly, preincubation with the selective CXCR2 antagonist SB332235 partially prevented chemokine-induced disturbance of both tight junction morphology and function. We conclude that human brain endothelial CXCR2 may contribute to blood–brain barrier disturbance under inflammatory conditions with increased CXCL5 and CXCL8 expression, where CXCR2 may also represent a novel pharmacological target for blood–brain barrier stabilization. KW - blood–brain barrier KW - multiple sclerosis KW - human cerebral endothelial cells KW - CXCR2 KW - CXCL5 KW - CXCL8 KW - interleukin-8 KW - SB332235 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-201297 SN - 1422-0067 VL - 20 IS - 3 ER - TY - JOUR A1 - Traub, Jan A1 - Otto, Markus A1 - Sell, Roxane A1 - Homola, György A. A1 - Steinacker, Petra A1 - Oeckl, Patrick A1 - Morbach, Caroline A1 - Frantz, Stefan A1 - Pham, Mirko A1 - Störk, Stefan A1 - Stoll, Guido A1 - Frey, Anna T1 - Serum glial fibrillary acidic protein indicates memory impairment in patients with chronic heart failure JF - ESC Heart Failure N2 - Aims Cognitive dysfunction occurs frequently in patients with heart failure (HF), but early detection remains challenging. Serum glial fibrillary acidic protein (GFAP) is an emerging biomarker of cognitive decline in disorders of primary neurodegeneration such as Alzheimer's disease. We evaluated the utility of serum GFAP as a biomarker for cognitive dysfunction and structural brain damage in patients with stable chronic HF. Methods and results Using bead-based single molecule immunoassays, we quantified serum levels of GFAP in patients with HF participating in the prospective Cognition.Matters-HF study. Participants were extensively phenotyped, including cognitive testing of five separate domains and magnetic resonance imaging (MRI) of the brain. Univariable and multivariable models, also accounting for multiple testing, were run. One hundred and forty-six chronic HF patients with a mean age of 63.8 ± 10.8 years were included (15.1% women). Serum GFAP levels (median 246 pg/mL, quartiles 165, 384 pg/mL; range 66 to 1512 pg/mL) did not differ between sexes. In the multivariable adjusted model, independent predictors of GFAP levels were age (T = 5.5; P < 0.001), smoking (T = 3.2; P = 0.002), estimated glomerular filtration rate (T = −4.7; P < 0.001), alanine aminotransferase (T = −2.1; P = 0.036), and the left atrial end-systolic volume index (T = 3.4; P = 0.004). NT-proBNP but not serum GFAP explained global cerebral atrophy beyond ageing. However, serum GFAP levels were associated with the cognitive domain visual/verbal memory (T = −3.0; P = 0.003) along with focal hippocampal atrophy (T = 2.3; P = 0.025). Conclusions Serum GFAP levels are affected by age, smoking, and surrogates of the severity of HF. The association of GFAP with memory dysfunction suggests that astroglial pathologies, which evade detection by conventional MRI, may contribute to memory loss beyond ageing in patients with chronic HF. KW - Glial fibrillary acidic protein KW - GFAP KW - Chronic heart failure KW - Cognitive decline KW - Memory dysfunction KW - Brain atrophy Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-312736 VL - 9 IS - 4 ER - TY - JOUR A1 - Bieber, Michael A1 - Schuhmann, Michael K. A1 - Bellut, Maximilian A1 - Stegner, David A1 - Heinze, Katrin G. A1 - Pham, Mirko A1 - Nieswandt, Bernhard A1 - Stoll, Guido T1 - Blockade of platelet glycoprotein Ibα augments neuroprotection in Orai2-deficient mice during middle cerebral artery occlusion JF - International Journal of Molecular Sciences N2 - During ischemic stroke, infarct growth before recanalization diminishes functional outcome. Hence, adjunct treatment options to protect the ischemic penumbra before recanalization are eagerly awaited. In experimental stroke targeting two different pathways conferred protection from penumbral tissue loss: (1) enhancement of hypoxic tolerance of neurons by deletion of the calcium channel subunit Orai2 and (2) blocking of detrimental lymphocyte–platelet responses. However, until now, no preclinical stroke study has assessed the potential of combining neuroprotective with anti-thrombo-inflammatory interventions to augment therapeutic effects. We induced focal cerebral ischemia in Orai2-deficient (Orai2\(^{-/-}\)) mice by middle cerebral artery occlusion (MCAO). Animals were treated with anti-glycoprotein Ib alpha (GPIbα) Fab fragments (p0p/B Fab) blocking GPIbα–von Willebrand factor (vWF) interactions. Rat immunoglobulin G (IgG) Fab was used as the control treatment. The extent of infarct growth before recanalization was assessed at 4 h after MCAO. Moreover, infarct volumes were determined 6 h after recanalization (occlusion time: 4 h). Orai2 deficiency significantly halted cerebral infarct progression under occlusion. Inhibition of platelet GPIbα further reduced primary infarct growth in Orai2\(^{-/-}\) mice. During ischemia–reperfusion, upon recanalization, mice were likewise protected. All in all, we show that neuroprotection in Orai2\(^{-/-}\) mice can be augmented by targeting thrombo-inflammation. This supports the clinical development of combined neuroprotective/anti-platelet strategies in hyper-acute stroke. KW - ischemic penumbra KW - Orai2 KW - glycoprotein receptor Ibα KW - ischemic stroke KW - thrombo-inflammation KW - middle cerebral artery occlusion Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-286038 SN - 1422-0067 VL - 23 IS - 16 ER - TY - JOUR A1 - Traub, Jan A1 - Grondey, Katja A1 - Gassenmaier, Tobias A1 - Schmitt, Dominik A1 - Fette, Georg A1 - Frantz, Stefan A1 - Boivin-Jahns, Valérie A1 - Jahns, Roland A1 - Störk, Stefan A1 - Stoll, Guido A1 - Reiter, Theresa A1 - Hofmann, Ulrich A1 - Weber, Martin S. A1 - Frey, Anna T1 - Sustained increase in serum glial fibrillary acidic protein after first ST-elevation myocardial infarction JF - International Journal of Molecular Sciences N2 - Acute ischemic cardiac injury predisposes one to cognitive impairment, dementia, and depression. Pathophysiologically, recent positron emission tomography data suggest astroglial activation after experimental myocardial infarction (MI). We analyzed peripheral surrogate markers of glial (and neuronal) damage serially within 12 months after the first ST-elevation MI (STEMI). Serum levels of glial fibrillary acidic protein (GFAP) and neurofilament light chain (NfL) were quantified using ultra-sensitive molecular immunoassays. Sufficient biomaterial was available from 45 STEMI patients (aged 28 to 78 years, median 56 years, 11% female). The median (quartiles) of GFAP was 63.8 (47.0, 89.9) pg/mL and of NfL 10.6 (7.2, 14.8) pg/mL at study entry 0–4 days after STEMI. GFAP after STEMI increased in the first 3 months, with a median change of +7.8 (0.4, 19.4) pg/mL (p = 0.007). It remained elevated without further relevant increases after 6 months (+11.7 (0.6, 23.5) pg/mL; p = 0.015), and 12 months (+10.3 (1.5, 22.7) pg/mL; p = 0.010) compared to the baseline. Larger relative infarction size was associated with a higher increase in GFAP (ρ = 0.41; p = 0.009). In contrast, NfL remained unaltered in the course of one year. Our findings support the idea of central nervous system involvement after MI, with GFAP as a potential peripheral biomarker of chronic glial damage as one pathophysiologic pathway. KW - myocardial infarction KW - STEMI KW - glial fibrillary acidic protein KW - GFAP KW - neurofilament light chain KW - NfL KW - glial damage KW - cardiac magnetic resonance imaging KW - MRI KW - infarction size Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-288261 SN - 1422-0067 VL - 23 IS - 18 ER - TY - JOUR A1 - Göpfert, Dennis A1 - Traub, Jan A1 - Sell, Roxane A1 - Homola, György A. A1 - Vogt, Marius A1 - Pham, Mirko A1 - Frantz, Stefan A1 - Störk, Stefan A1 - Stoll, Guido A1 - Frey, Anna T1 - Profiles of cognitive impairment in chronic heart failure—A cluster analytic approach JF - Frontiers in Human Neuroscience N2 - Background Cognitive impairment is a major comorbidity in patients with chronic heart failure (HF) with a wide range of phenotypes. In this study, we aimed to identify and compare different clusters of cognitive deficits. Methods The prospective cohort study “Cognition.Matters-HF” recruited 147 chronic HF patients (aged 64.5 ± 10.8 years; 16.2% female) of any etiology. All patients underwent extensive neuropsychological testing. We performed a hierarchical cluster analysis of the cognitive domains, such as intensity of attention, visual/verbal memory, and executive function. Generated clusters were compared exploratively with respect to the results of cardiological, neurological, and neuroradiological examinations without correction for multiple testing. Results Dendrogram and the scree plot suggested three distinct cognitive profiles: In the first cluster, 42 patients (28.6%) performed without any deficits in all domains. Exclusively, the intensity of attention deficits was seen in the second cluster, including 55 patients (37.4%). A third cluster with 50 patients (34.0%) was characterized by deficits in all cognitive domains. Age (p = 0.163) and typical clinical markers of chronic HF, such as ejection fraction (p = 0.222), 6-min walking test distance (p = 0.138), NT-proBNP (p = 0.364), and New York Heart Association class (p = 0.868) did not differ between clusters. However, we observed that women (p = 0.012) and patients with previous cardiac valve surgery (p = 0.005) prevailed in the “global deficits” cluster and the “no deficits” group had a lower prevalence of underlying arterial hypertension (p = 0.029). Total brain volume (p = 0.017) was smaller in the global deficit cluster, and serum levels of glial fibrillary acidic protein were increased (p = 0.048). Conclusion Apart from cognitively healthy and globally impaired HF patients, we identified a group with deficits only in the intensity of attention. Women and patients with previous cardiac valve surgery are at risk for global cognitive impairment when suffering HF and could benefit from special multimodal treatment addressing the psychosocial condition. KW - chronic heart failure KW - cluster analysis KW - cognitive impairment KW - intensity of attention KW - glial fibrillary acidic protein Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-313429 VL - 17 ER -