TY - JOUR A1 - Düking, Peter A1 - Hotho, Andreas A1 - Holmberg, Hans-Christer A1 - Fuss, Franz Konstantin A1 - Sperlich, Billy T1 - Comparison of Non-Invasive Individual Monitoring of the Training and Health of Athletes with Commercially Available Wearable Technologies JF - Frontiers in Physiology N2 - Athletes adapt their training daily to optimize performance, as well as avoid fatigue, overtraining and other undesirable effects on their health. To optimize training load, each athlete must take his/her own personal objective and subjective characteristics into consideration and an increasing number of wearable technologies (wearables) provide convenient monitoring of various parameters. Accordingly, it is important to help athletes decide which parameters are of primary interest and which wearables can monitor these parameters most effectively. Here, we discuss the wearable technologies available for non-invasive monitoring of various parameters concerning an athlete's training and health. On the basis of these considerations, we suggest directions for future development. Furthermore, we propose that a combination of several wearables is most effective for accessing all relevant parameters, disturbing the athlete as little as possible, and optimizing performance and promoting health. KW - sports technology KW - wearable technologies KW - performance parameters KW - health monitoring KW - performance monitoring Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-165516 VL - 7 IS - 71 ER - TY - JOUR A1 - Düking, Peter A1 - Achtzehn, Silvia A1 - Holmberg, Hans-Christer A1 - Sperlich, Billy T1 - Integrated framework of load monitoring by a combination of smartphone applications, wearables and point-of-care testing provides feedback that allows individual responsive adjustments to activities of daily living JF - Sensors N2 - Athletes schedule their training and recovery in periods, often utilizing a pre-defined strategy. To avoid underperformance and/or compromised health, the external load during training should take into account the individual’s physiological and perceptual responses. No single variable provides an adequate basis for planning, but continuous monitoring of a combination of several indicators of internal and external load during training, recovery and off-training as well may allow individual responsive adjustments of a training program in an effective manner. From a practical perspective, including that of coaches, monitoring of potential changes in health and performance should ideally be valid, reliable and sensitive, as well as time-efficient, easily applicable, non-fatiguing and as non-invasive as possible. Accordingly, smartphone applications, wearable sensors and point-of-care testing appear to offer a suitable monitoring framework allowing responsive adjustments to exercise prescription. Here, we outline 24-h monitoring of selected parameters by these technologies that (i) allows responsive adjustments of exercise programs, (ii) enhances performance and/or (iii) reduces the risk for overuse, injury and/or illness. KW - biofeedback KW - eHealth KW - individualized training KW - injury prevention KW - IoT KW - periodization KW - load management Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-176506 VL - 18 IS - 5 ER - TY - JOUR A1 - Düking, Peter A1 - Holmberg, Hans-Christer A1 - Sperlich, Billy T1 - Instant Biofeedback Provided by Wearable Sensor Technology Can Help to Optimize Exercise and Prevent Injury and Overuse JF - Frontiers in Physiology KW - sports KW - training optimization KW - performance monitoring KW - health monitoring KW - technology KW - coaching Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-158044 VL - 8 IS - 167 ER - TY - JOUR A1 - Sperlich, Billy A1 - De Clerck, Ine A1 - Zinner, Christoph A1 - Holmberg,, Hans-Christer A1 - Wallmann-Sperlich, Birgit T1 - Prolonged sitting interrupted by 6-min of high-intensity exercise: circulatory, metabolic, hormonal, thermal, cognitive, and perceptual responses JF - Frontiers in Physiology N2 - The aim was to examine certain aspects of circulatory, metabolic, hormonal, thermoregulatory, cognitive, and perceptual responses while sitting following a brief session of high-intensity interval exercise. Twelve students (five men; age, 22 ± 2 years) performed two trials involving either simply sitting for 180 min (SIT) or sitting for this same period with a 6-min session of high-intensity exercise after 60 min (SIT+HIIT). At T\(_0\) (after 30 min of resting), T\(_1\) (after a 20-min breakfast), T\(_2\) (after sitting for 1 h), T\(_3\) (immediately after the HIIT), T\(_4\), T\(_5\), T\(_6\), and T\(_7\) (30, 60, 90, and 120 min after the HIIT), circulatory, metabolic, hormonal, thermoregulatory, cognitive, and perceptual responses were assessed. The blood lactate concentration (at T\(_3\)–T\(_5\)), heart rate (at T\(_3\)–T\(_6\)), oxygen uptake (at T\(_3\)–T\(_7\)), respiratory exchange ratio, and sensations of heat (T\(_3\)–T\(_5\)), sweating (T\(_3\), T\(_4\)) and odor (T\(_3\)), as well as perception of vigor (T\(_3\)–T\(_6\)), were higher and the respiratory exchange ratio (T\(_4\)–T\(_7\)) and mean body and skin temperatures (T\(_3\)) lower in the SIT+HIIT than the SIT trial. Levels of blood glucose and salivary cortisol, cerebral oxygenation, and feelings of anxiety/depression, fatigue or hostility, as well as the variables of cognitive function assessed by the Stroop test did not differ between SIT and SIT+HIIT. In conclusion, interruption of prolonged sitting with a 6-min session of HIIT induced more pronounced circulatory and metabolic responses and improved certain aspects of perception, without affecting selected hormonal, thermoregulatory or cognitive functions. KW - inactivity KW - high-intensity interval training KW - sedentary lifestyle KW - students KW - workplace KW - intervention KW - physical activity KW - health promotion Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-177307 VL - 9 IS - 1279 ER -