TY - JOUR A1 - Sbiera, Silviu A1 - Dexneit, Thomas A1 - Reichardt, Sybille D. A1 - Michel, Kai D. A1 - van den Brandt, Jens A1 - Schmull, Sebastian A1 - Kraus, Luitgard A1 - Beyer, Melanie A1 - Mlynski, Robert A1 - Wortmann, Sebastian A1 - Allolio, Bruno A1 - Reichardt, Holger M. A1 - Fassnacht, Martin T1 - Influence of Short-Term Glucocorticoid Therapy on Regulatory T Cells \(In\) \(Vivo\) JF - PLoS One N2 - Background: Pre- and early clinical studies on patients with autoimmune diseases suggested that induction of regulatory T(T(reg)) cells may contribute to the immunosuppressive effects of glucocorticoids(GCs). Objective: We readdressed the influence of GC therapy on T(reg) cells in immunocompetent human subjects and naive mice. Methods: Mice were treated with increasing doses of intravenous dexamethasone followed by oral taper, and T(reg) cells in spleen and blood were analyzed by FACS. Sixteen patients with sudden hearing loss but without an inflammatory disease received high-dose intravenous prednisolone followed by stepwise dose reduction to low oral prednisolone. Peripheral blood T(reg) cells were analyzed prior and after a 14 day GC therapy based on different markers. Results: Repeated GC administration to mice for three days dose-dependently decreased the absolute numbers of T(reg) cells in blood (100 mg dexamethasone/kg body weight: 2.8 +/- 1.8 x 10(4) cells/ml vs. 33 +/- 11 x 10(4) in control mice) and spleen (dexamethasone: 2.8 +/- 1.9 x 10(5)/spleen vs. 95 +/- 22 x 10(5)/spleen in control mice), which slowly recovered after 14 days taper in spleen but not in blood. The relative frequency of FOXP3(+) T(reg) cells amongst the CD4(+) T cells also decreased in a dose dependent manner with the effect being more pronounced in blood than in spleen. The suppressive capacity of T(reg) cells was unaltered by GC treatment in vitro. In immunocompetent humans, GCs induced mild T cell lymphocytosis. However, it did not change the relative frequency of circulating T(reg) cells in a relevant manner, although there was some variation depending on the definition of the T(reg) cells (FOXP3(+): 4.0 +/- 1.5% vs 3.4 +/- 1.5%*; AITR(+): 0.660.4 vs 0.5 +/- 0.3%, CD127(low): 4.0 +/- 1.3 vs 5.0 +/- 3.0%* and CTLA4+: 13.8 +/- 11.5 vs 15.6 +/- 12.5%; * p < 0.05). Conclusion: Short-term GC therapy does not induce the hitherto supposed increase in circulating T(reg) cell frequency, neither in immunocompetent humans nor in mice. Thus, it is questionable that the clinical efficacy of GCs is achieved by modulating T(reg) cell numbers. KW - Systemic-Lupus-Erythematosus KW - Immunological Self-Tolerance KW - Multiple-Sclerosis KW - Suppressive Function KW - Autoimmune-Diseases KW - FoxP3 Expression KW - Dendritic Cells KW - Immune-System KW - Sex-Hormones KW - Antigen 4 Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-140822 VL - 6 IS - 9 ER - TY - JOUR A1 - Fassnacht, Martin A1 - Sbiera, Silviu A1 - Dexneit, Thomas A1 - Reichardt, Sybille D. A1 - Michel, Kai D. A1 - van den Brandt, Jens A1 - Schmull, Sebastian A1 - Kraus, Luitgard A1 - Beyer, Melanie A1 - Mlynski, Robert A1 - Wortmann, Sebastian A1 - Allolio, Bruno A1 - Reichardt, Holger M. T1 - Influence of Short-Term Glucocorticoid Therapy on Regulatory T Cells In Vivo N2 - Background: Pre- and early clinical studies on patients with autoimmune diseases suggested that induction of regulatory T(Treg) cells may contribute to the immunosuppressive effects of glucocorticoids(GCs). Objective: We readdressed the influence of GC therapy on Treg cells in immunocompetent human subjects and naı¨ve mice. Methods: Mice were treated with increasing doses of intravenous dexamethasone followed by oral taper, and Treg cells in spleen and blood were analyzed by FACS. Sixteen patients with sudden hearing loss but without an inflammatory disease received high-dose intravenous prednisolone followed by stepwise dose reduction to low oral prednisolone. Peripheral blood Treg cells were analyzed prior and after a 14 day GC therapy based on different markers. Results: Repeated GC administration to mice for three days dose-dependently decreased the absolute numbers of Treg cells in blood (100 mg dexamethasone/kg body weight: 2.861.86104 cells/ml vs. 336116104 in control mice) and spleen (dexamethasone: 2.861.96105/spleen vs. 956226105/spleen in control mice), which slowly recovered after 14 days taper in spleen but not in blood. The relative frequency of FOXP3+ Treg cells amongst the CD4+ T cells also decreased in a dose dependent manner with the effect being more pronounced in blood than in spleen. The suppressive capacity of Treg cells was unaltered by GC treatment in vitro. In immunocompetent humans, GCs induced mild T cell lymphocytosis. However, it did not change the relative frequency of circulating Treg cells in a relevant manner, although there was some variation depending on the definition of the Treg cells (FOXP3+: 4.061.5% vs 3.461.5%*; AITR+: 0.660.4 vs 0.560.3%, CD127low: 4.061.3 vs 5.063.0%* and CTLA4+: 13.8611.5 vs 15.6612.5%; * p,0.05). Conclusion: Short-term GC therapy does not induce the hitherto supposed increase in circulating Treg cell frequency, neither in immunocompetent humans nor in mice. Thus, it is questionable that the clinical efficacy of GCs is achieved by modulating Treg cell numbers. KW - Medizin Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-74749 ER - TY - JOUR A1 - Montes-Cobos, Elena A1 - Li, Xiao A1 - Fischer, Henrike J. A1 - Sasse, André A1 - Kügler, Sebastian A1 - Didié, Michael A1 - Toischer, Karl A1 - Fassnacht, Martin A1 - Dressel, Ralf A1 - Reichardt, Holger M. T1 - Inducible Knock-Down of the Mineralocorticoid Receptor in Mice Disturbs Regulation of the Renin-Angiotensin-Aldosterone System and Attenuates Heart Failure Induced by Pressure Overload JF - PLoS One N2 - Mineralocorticoid receptor (MR) inactivation in mice results in early postnatal lethality. Therefore we generated mice in which MR expression can be silenced during adulthood by administration of doxycycline (Dox). Using a lentiviral approach, we obtained two lines of transgenic mice harboring a construct that allows for regulatable MR inactivation by RNAi and concomitant expression of eGFP. MR mRNA levels in heart and kidney of inducible MR knock-down mice were unaltered in the absence of Dox, confirming the tightness of the system. In contrast, two weeks after Dox administration MR expression was significantly diminished in a variety of tissues. In the kidney, this resulted in lower mRNA levels of selected target genes, which was accompanied by strongly increased serum aldosterone and plasma renin levels as well as by elevated sodium excretion. In the healthy heart, gene expression and the amount of collagen were unchanged despite MR levels being significantly reduced. After transverse aortic constriction, however, cardiac hypertrophy and progressive heart failure were attenuated by MR silencing, fibrosis was unaffected and mRNA levels of a subset of genes reduced. Taken together, we believe that this mouse model is a useful tool to investigate the role of the MR in pathophysiological processes. KW - cells KW - balance KW - polarization KW - transgenic rats Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-137575 VL - 10 IS - 11 ER -