TY - JOUR A1 - De Palma, Adriana A1 - Abrahamczyk, Stefan A1 - Aizen, Marcelo A. A1 - Albrecht, Matthias A1 - Basset, Yves A1 - Bates, Adam A1 - Blake, Robin J. A1 - Boutin, Céline A1 - Bugter, Rob A1 - Connop, Stuart A1 - Cruz-López, Leopoldo A1 - Cunningham, Saul A. A1 - Darvill, Ben A1 - Diekötter, Tim A1 - Dorn, Silvia A1 - Downing, Nicola A1 - Entling, Martin H. A1 - Farwig, Nina A1 - Felicioli, Antonio A1 - Fonte, Steven J. A1 - Fowler, Robert A1 - Franzen, Markus Franzén A1 - Goulson, Dave A1 - Grass, Ingo A1 - Hanley, Mick E. A1 - Hendrix, Stephen D. A1 - Herrmann, Farina A1 - Herzog, Felix A1 - Holzschuh, Andrea A1 - Jauker, Birgit A1 - Kessler, Michael A1 - Knight, M. E. A1 - Kruess, Andreas A1 - Lavelle, Patrick A1 - Le Féon, Violette A1 - Lentini, Pia A1 - Malone, Louise A. A1 - Marshall, Jon A1 - Martínez Pachón, Eliana A1 - McFrederick, Quinn S. A1 - Morales, Carolina L. A1 - Mudri-Stojnic, Sonja A1 - Nates-Parra, Guiomar A1 - Nilsson, Sven G. A1 - Öckinger, Erik A1 - Osgathorpe, Lynne A1 - Parra-H, Alejandro A1 - Peres, Carlos A. A1 - Persson, Anna S. A1 - Petanidou, Theodora A1 - Poveda, Katja A1 - Power, Eileen F. A1 - Quaranta, Marino A1 - Quintero, Carolina A1 - Rader, Romina A1 - Richards, Miriam H. A1 - Roulston, T’ai A1 - Rousseau, Laurent A1 - Sadler, Jonathan P. A1 - Samnegård, Ulrika A1 - Schellhorn, Nancy A. A1 - Schüepp, Christof A1 - Schweiger, Oliver A1 - Smith-Pardo, Allan H. A1 - Steffan-Dewenter, Ingolf A1 - Stout, Jane C. A1 - Tonietto, Rebecca K. A1 - Tscharntke, Teja A1 - Tylianakis, Jason M. A1 - Verboven, Hans A. F. A1 - Vergara, Carlos H. A1 - Verhulst, Jort A1 - Westphal, Catrin A1 - Yoon, Hyung Joo A1 - Purvis, Andy T1 - Predicting bee community responses to land-use changes: Effects of geographic and taxonomic biases JF - Scientific Reports N2 - Land-use change and intensification threaten bee populations worldwide, imperilling pollination services. Global models are needed to better characterise, project, and mitigate bees' responses to these human impacts. The available data are, however, geographically and taxonomically unrepresentative; most data are from North America and Western Europe, overrepresenting bumblebees and raising concerns that model results may not be generalizable to other regions and taxa. To assess whether the geographic and taxonomic biases of data could undermine effectiveness of models for conservation policy, we have collated from the published literature a global dataset of bee diversity at sites facing land-use change and intensification, and assess whether bee responses to these pressures vary across 11 regions (Western, Northern, Eastern and Southern Europe; North, Central and South America; Australia and New Zealand; South East Asia; Middle and Southern Africa) and between bumblebees and other bees. Our analyses highlight strong regionally-based responses of total abundance, species richness and Simpson's diversity to land use, caused by variation in the sensitivity of species and potentially in the nature of threats. These results suggest that global extrapolation of models based on geographically and taxonomically restricted data may underestimate the true uncertainty, increasing the risk of ecological surprises. KW - bee community KW - land-use change KW - intensification KW - geographic biases KW - taxonomic biases KW - global dataset Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-167642 VL - 6 ER - TY - JOUR A1 - Villagomez, Gemma N. A1 - Nürnberger, Fabian A1 - Requier, Fabrice A1 - Schiele, Susanne A1 - Steffan-Dewenter, Ingo T1 - Effects of temperature and photoperiod on the seasonal timing of Western honey bee colonies and an early spring flowering plant JF - Ecology and Evolution N2 - Temperature and photoperiod are important Zeitgebers for plants and pollinators to synchronize growth and reproduction with suitable environmental conditions and their mutualistic interaction partners. Global warming can disturb this temporal synchronization since interacting species may respond differently to new combinations of photoperiod and temperature under future climates, but experimental studies on the potential phenological responses of plants and pollinators are lacking. We simulated current and future combinations of temperature and photoperiod to assess effects on the overwintering and spring phenology of an early flowering plant species (Crocus sieberi) and the Western honey bee (Apis mellifera). We could show that increased mean temperatures in winter and early spring advanced the flowering phenology of C. sieberi and intensified brood rearing activity of A. mellifera but did not advance their brood rearing activity. Flowering phenology of C. sieberi also relied on photoperiod, while brood rearing activity of A. mellifera did not. The results confirm that increases in temperature can induce changes in phenological responses and suggest that photoperiod can also play a critical role in these responses, with currently unknown consequences for real-world ecosystems in a warming climate. KW - Apis mellifera KW - climate change KW - rocus sieberi KW - phenology KW - plant–pollinator interaction KW - temporal mismatch Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-258770 VL - 11 IS - 12 ER -