TY - JOUR A1 - Bae, Soyeon A1 - Heidrich, Lea A1 - Levick, Shaun R. A1 - Gossner, Martin M. A1 - Seibold, Sebastian A1 - Weisser, Wolfgang W. A1 - Magdon, Paul A1 - Serebryanyk, Alla A1 - Bässler, Claus A1 - Schäfer, Deborah A1 - Schulze, Ernst-Detlef A1 - Doerfler, Inken A1 - Müller, Jörg A1 - Jung, Kirsten A1 - Heurich, Marco A1 - Fischer, Markus A1 - Roth, Nicolas A1 - Schall, Peter A1 - Boch, Steffen A1 - Wöllauer, Stephan A1 - Renner, Swen C. A1 - Müller, Jörg T1 - Dispersal ability, trophic position and body size mediate species turnover processes: Insights from a multi-taxa and multi-scale approach JF - Diversity and Distribution N2 - Aim: Despite increasing interest in β-diversity, that is the spatial and temporal turnover of species, the mechanisms underlying species turnover at different spatial scales are not fully understood, although they likely differ among different functional groups. We investigated the relative importance of dispersal limitations and the environmental filtering caused by vegetation for local, multi-taxa forest communities differing in their dispersal ability, trophic position and body size. Location: Temperate forests in five regions across Germany. Methods: In the inter-region analysis, the independent and shared effects of the regional spatial structure (regional species pool), landscape spatial structure (dispersal limitation) and environmental factors on species turnover were quantified with a 1-ha grain across 11 functional groups in up to 495 plots by variation partitioning. In the intra-region analysis, the relative importance of three environmental factors related to vegetation (herb and tree layer composition and forest physiognomy) and spatial structure for species turnover was determined. Results: In the inter-region analysis, over half of the explained variation in community composition (23% of the total explained 35%) was explained by the shared effects of several factors, indicative of spatially structured environmental filtering. Among the independent effects, environmental factors were the strongest on average over 11 groups, but the importance of landscape spatial structure increased for less dispersive functional groups. In the intra-region analysis, the independent effect of plant species composition had a stronger influence on species turnover than forest physiognomy, but the relative importance of the latter increased with increasing trophic position and body size. Main conclusions: Our study revealed that the mechanisms structuring assemblage composition are associated with the traits of functional groups. Hence, conservation frameworks targeting biodiversity of multiple groups should cover both environmental and biogeographical gradients. Within regions, forest management can enhance β-diversity particularly by diversifying tree species composition and forest physiognomy. KW - body size KW - dispersal ability KW - environmental filtering KW - forest physiognomy KW - neutral processes KW - plant composition KW - regional species pool KW - species turnover KW - trophic position KW - β-diversity Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-236117 VL - 27 IS - 3 ER - TY - JOUR A1 - Englmeier, Jana A1 - von Hoermann, Christian A1 - Rieker, Daniel A1 - Benbow, Marc Eric A1 - Benjamin, Caryl A1 - Fricke, Ute A1 - Ganuza, Cristina A1 - Haensel, Maria A1 - Lackner, Tomáš A1 - Mitesser, Oliver A1 - Redlich, Sarah A1 - Riebl, Rebekka A1 - Rojas-Botero, Sandra A1 - Rummler, Thomas A1 - Salamon, Jörg-Alfred A1 - Sommer, David A1 - Steffan-Dewenter, Ingolf A1 - Tobisch, Cynthia A1 - Uhler, Johannes A1 - Uphus, Lars A1 - Zhang, Jie A1 - Müller, Jörg T1 - Dung-visiting beetle diversity is mainly affected by land use, while community specialization is driven by climate JF - Ecology and Evolution N2 - Dung beetles are important actors in the self-regulation of ecosystems by driving nutrient cycling, bioturbation, and pest suppression. Urbanization and the sprawl of agricultural areas, however, destroy natural habitats and may threaten dung beetle diversity. In addition, climate change may cause shifts in geographical distribution and community composition. We used a space-for-time approach to test the effects of land use and climate on α-diversity, local community specialization (H\(_2\)′) on dung resources, and γ-diversity of dung-visiting beetles. For this, we used pitfall traps baited with four different dung types at 115 study sites, distributed over a spatial extent of 300 km × 300 km and 1000 m in elevation. Study sites were established in four local land-use types: forests, grasslands, arable sites, and settlements, embedded in near-natural, agricultural, or urban landscapes. Our results show that abundance and species density of dung-visiting beetles were negatively affected by agricultural land use at both spatial scales, whereas γ-diversity at the local scale was negatively affected by settlements and on a landscape scale equally by agricultural and urban land use. Increasing precipitation diminished dung-visiting beetle abundance, and higher temperatures reduced community specialization on dung types and γ-diversity. These results indicate that intensive land use and high temperatures may cause a loss in dung-visiting beetle diversity and alter community networks. A decrease in dung-visiting beetle diversity may disturb decomposition processes at both local and landscape scales and alter ecosystem functioning, which may lead to drastic ecological and economic damage. KW - coleoptera KW - coprophagous beetles KW - decomposition KW - global change KW - hill numbers KW - network analysis Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-312846 SN - 2045-7758 VL - 12 IS - 10 ER - TY - JOUR A1 - Ganuza, Cristina A1 - Redlich, Sarah A1 - Uhler, Johannes A1 - Tobisch, Cynthia A1 - Rojas-Botero, Sandra A1 - Peters, Marcell K. A1 - Zhang, Jie A1 - Benjamin, Caryl S. A1 - Englmeier, Jana A1 - Ewald, Jörg A1 - Fricke, Ute A1 - Haensel, Maria A1 - Kollmann, Johannes A1 - Riebl, Rebekka A1 - Uphus, Lars A1 - Müller, Jörg A1 - Steffan-Dewenter, Ingolf T1 - Interactive effects of climate and land use on pollinator diversity differ among taxa and scales JF - Science Advances N2 - Changes in climate and land use are major threats to pollinating insects, an essential functional group. Here, we unravel the largely unknown interactive effects of both threats on seven pollinator taxa using a multiscale space-for-time approach across large climate and land-use gradients in a temperate region. Pollinator community composition, regional gamma diversity, and community dissimilarity (beta diversity) of pollinator taxa were shaped by climate-land-use interactions, while local alpha diversity was solely explained by their additive effects. Pollinator diversity increased with reduced land-use intensity (forest < grassland < arable land < urban) and high flowering-plant diversity at different spatial scales, and higher temperatures homogenized pollinator communities across regions. Our study reveals declines in pollinator diversity with land-use intensity at multiple spatial scales and regional community homogenization in warmer and drier climates. Management options at several scales are highlighted to mitigate impacts of climate change on pollinators and their ecosystem services. KW - climate KW - land use KW - pollinator diversity Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-301303 VL - 8 IS - 18 ER - TY - JOUR A1 - Redlich, Sarah A1 - Zhang, Jie A1 - Benjamin, Caryl A1 - Dhillon, Maninder Singh A1 - Englmeier, Jana A1 - Ewald, Jörg A1 - Fricke, Ute A1 - Ganuza, Cristina A1 - Haensel, Maria A1 - Hovestadt, Thomas A1 - Kollmann, Johannes A1 - Koellner, Thomas A1 - Kübert‐Flock, Carina A1 - Kunstmann, Harald A1 - Menzel, Annette A1 - Moning, Christoph A1 - Peters, Wibke A1 - Riebl, Rebekka A1 - Rummler, Thomas A1 - Rojas‐Botero, Sandra A1 - Tobisch, Cynthia A1 - Uhler, Johannes A1 - Uphus, Lars A1 - Müller, Jörg A1 - Steffan‐Dewenter, Ingolf T1 - Disentangling effects of climate and land use on biodiversity and ecosystem services—A multi‐scale experimental design JF - Methods in Ecology and Evolution N2 - Climate and land-use change are key drivers of environmental degradation in the Anthropocene, but too little is known about their interactive effects on biodiversity and ecosystem services. Long-term data on biodiversity trends are currently lacking. Furthermore, previous ecological studies have rarely considered climate and land use in a joint design, did not achieve variable independence or lost statistical power by not covering the full range of environmental gradients. Here, we introduce a multi-scale space-for-time study design to disentangle effects of climate and land use on biodiversity and ecosystem services. The site selection approach coupled extensive GIS-based exploration (i.e. using a Geographic information system) and correlation heatmaps with a crossed and nested design covering regional, landscape and local scales. Its implementation in Bavaria (Germany) resulted in a set of study plots that maximise the potential range and independence of environmental variables at different spatial scales. Stratifying the state of Bavaria into five climate zones (reference period 1981–2010) and three prevailing land-use types, that is, near-natural, agriculture and urban, resulted in 60 study regions (5.8 × 5.8 km quadrants) covering a mean annual temperature gradient of 5.6–9.8°C and a spatial extent of ~310 × 310 km. Within these regions, we nested 180 study plots located in contrasting local land-use types, that is, forests, grasslands, arable land or settlement (local climate gradient 4.5–10°C). This approach achieved low correlations between climate and land use (proportional cover) at the regional and landscape scale with |r ≤ 0.33| and |r ≤ 0.29| respectively. Furthermore, using correlation heatmaps for local plot selection reduced potentially confounding relationships between landscape composition and configuration for plots located in forests, arable land and settlements. The suggested design expands upon previous research in covering a significant range of environmental gradients and including a diversity of dominant land-use types at different scales within different climatic contexts. It allows independent assessment of the relative contribution of multi-scale climate and land use on biodiversity and ecosystem services. Understanding potential interdependencies among global change drivers is essential to develop effective restoration and mitigation strategies against biodiversity decline, especially in expectation of future climatic changes. Importantly, this study also provides a baseline for long-term ecological monitoring programs. KW - study design KW - biodiversity KW - climate change KW - ecosystem functioning KW - insect monitoring KW - land use KW - space-for-time approach KW - spatial scales Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-258270 VL - 13 IS - 2 ER - TY - JOUR A1 - Uhler, Johannes A1 - Redlich, Sarah A1 - Zhang, Jie A1 - Hothorn, Torsten A1 - Tobisch, Cynthia A1 - Ewald, Jörg A1 - Thorn, Simon A1 - Seibold, Sebastian A1 - Mitesser, Oliver A1 - Morinère, Jérôme A1 - Bozicevic, Vedran A1 - Benjamin, Caryl S. A1 - Englmeier, Jana A1 - Fricke, Ute A1 - Ganuza, Cristina A1 - Haensel, Maria A1 - Riebl, Rebekka A1 - Rojas-Botero, Sandra A1 - Rummler, Thomas A1 - Uphus, Lars A1 - Schmidt, Stefan A1 - Steffan-Dewenter, Ingolf A1 - Müller, Jörg T1 - Relationships of insect biomass and richness with land use along a climate gradient JF - Nature Communications N2 - Recently reported insect declines have raised both political and social concern. Although the declines have been attributed to land use and climate change, supporting evidence suffers from low taxonomic resolution, short time series, a focus on local scales, and the collinearity of the identified drivers. In this study, we conducted a systematic assessment of insect populations in southern Germany, which showed that differences in insect biomass and richness are highly context dependent. We found the largest difference in biomass between semi-natural and urban environments (-42%), whereas differences in total richness (-29%) and the richness of threatened species (-56%) were largest from semi-natural to agricultural environments. These results point to urbanization and agriculture as major drivers of decline. We also found that richness and biomass increase monotonously with increasing temperature, independent of habitat. The contrasting patterns of insect biomass and richness question the use of these indicators as mutual surrogates. Our study provides support for the implementation of more comprehensive measures aimed at habitat restoration in order to halt insect declines. KW - biodiversity KW - ecology Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-265058 VL - 12 IS - 1 ER - TY - JOUR A1 - Herrmann, Andreas B. A1 - Müller, Martha‐Lena A1 - Orth, Martin F. A1 - Müller, Jörg P. A1 - Zernecke, Alma A1 - Hochhaus, Andreas A1 - Ernst, Thomas A1 - Butt, Elke A1 - Frietsch, Jochen J. T1 - Knockout of LASP1 in CXCR4 expressing CML cells promotes cell persistence, proliferation and TKI resistance JF - Journal of Cellular and Molecular Medicine N2 - Chronic myeloid leukaemia (CML) is a clonal myeloproliferative stem cell disorder characterized by the constitutively active BCR‐ABL tyrosine kinase. The LIM and SH3 domain protein 1 (LASP1) has recently been identified as a novel BCR‐ABL substrate and is associated with proliferation, migration, tumorigenesis and chemoresistance in several cancers. Furthermore, LASP1 was shown to bind to the chemokine receptor 4 (CXCR4), thought to be involved in mechanisms of relapse. In order to identify potential LASP1‐mediated pathways and related factors that may help to further eradicate minimal residual disease (MRD), the effect of LASP1 on processes involved in progression and maintenance of CML was investigated. The present data indicate that not only overexpression of CXCR4, but also knockout of LASP1 contributes to proliferation, reduced apoptosis and migration as well as increased adhesive potential of K562 CML cells. Furthermore, LASP1 depletion in K562 CML cells leads to decreased cytokine release and reduced NK cell‐mediated cytotoxicity towards CML cells. Taken together, these results indicate that in CML, reduced levels of LASP1 alone and in combination with high CXCR4 expression may contribute to TKI resistance. KW - BCR‐ABL KW - CML KW - CXCR4 KW - LASP1 KW - nilotinib KW - precursor cells Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-214122 VL - 24 IS - 5 SP - 2942 EP - 2955 ER - TY - JOUR A1 - Hagge, Jonas A1 - Müller, Jörg A1 - Birkemoe, Tone A1 - Buse, Jörn A1 - Christensen, Rune Haubo Bojesen A1 - Gossner, Martin M. A1 - Gruppe, Axel A1 - Heibl, Christoph A1 - Jarzabek‐Müller, Andrea A1 - Seibold, Sebastian A1 - Siitonen, Juha A1 - Soutinho, João Gonçalo A1 - Sverdrup‐Thygeson, Anne A1 - Thorn, Simon A1 - Drag, Lukas T1 - What does a threatened saproxylic beetle look like? Modelling extinction risk using a new morphological trait database JF - Journal of Animal Ecology N2 - The extinction of species is a non‐random process, and understanding why some species are more likely to go extinct than others is critical for conservation efforts. Functional trait‐based approaches offer a promising tool to achieve this goal. In forests, deadwood‐dependent (saproxylic) beetles comprise a major part of threatened species, but analyses of their extinction risk have been hindered by the availability of suitable morphological traits. To better understand the mechanisms underlying extinction in insects, we investigated the relationships between morphological features and the extinction risk of saproxylic beetles. Specifically, we hypothesised that species darker in colour, with a larger and rounder body, a lower mobility, lower sensory perception and more robust mandibles are at higher risk. We first developed a protocol for morphological trait measurements and present a database of 37 traits for 1,157 European saproxylic beetle species. Based on 13 selected, independent traits characterising aspects of colour, body shape, locomotion, sensory perception and foraging, we used a proportional‐odds multiple linear mixed‐effects model to model the German Red List categories of 744 species as an ordinal index of extinction risk. Six out of 13 traits correlated significantly with extinction risk. Larger species as well as species with a broad and round body had a higher extinction risk than small, slim and flattened species. Species with short wings had a higher extinction risk than those with long wings. On the contrary, extinction risk increased with decreasing wing load and with higher mandibular aspect ratio (shorter and more robust mandibles). Our study provides new insights into how morphological traits, beyond the widely used body size, determine the extinction risk of saproxylic beetles. Moreover, our approach shows that the morphological characteristics of beetles can be comprehensively represented by a selection of 13 traits. We recommend them as a starting point for functional analyses in the rapidly growing field of ecological and conservation studies of deadwood. KW - deadwood KW - extinction risk KW - forest biodiversity KW - forestry KW - functional traits KW - morphometry KW - red lists KW - saproxylic beetles Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-244717 VL - 90 IS - 8 SP - 1934 EP - 1947 ER - TY - JOUR A1 - Houben, Roland A1 - Hesbacher, Sonja A1 - Schmid, Corinna P. A1 - Kauczok, Claudia S. A1 - Flohr, Ulrike A1 - Haferkamp, Sebastian A1 - Müller, Cornelia S. L. A1 - Schrama, David A1 - Wischhusen, Jörg A1 - Becker, Jürgen C. T1 - High-Level Expression of Wild-Type p53 in Melanoma Cells is Frequently Associated with Inactivity in p53 Reporter Gene Assays N2 - Background: Inactivation of the p53 pathway that controls cell cycle progression, apoptosis and senescence, has been proposed to occur in virtually all human tumors and p53 is the protein most frequently mutated in human cancer. However, the mutational status of p53 in melanoma is still controversial; to clarify this notion we analysed the largest series of melanoma samples reported to date. Methodology/Principal Findings: Immunohistochemical analysis of more than 180 melanoma specimens demonstrated that high levels of p53 are expressed in the vast majority of cases. Subsequent sequencing of the p53 exons 5–8, however, revealed only in one case the presence of a mutation. Nevertheless, by means of two different p53 reporter constructs we demonstrate transcriptional inactivity of wild type p53 in 6 out of 10 melanoma cell lines; the 4 other p53 wild type melanoma cell lines exhibit p53 reporter gene activity, which can be blocked by shRNA knock down of p53. Conclusions/Significance: In melanomas expressing high levels of wild type p53 this tumor suppressor is frequently inactivated at transcriptional level. KW - Krebs KW - Hautkrebs Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-69012 ER - TY - JOUR A1 - Albrecht, Marco A1 - Sharma, Cynthia M. A1 - Dittrich, Marcus T. A1 - Müller, Tobias A1 - Reinhardt, Richard A1 - Vogel, Jörg A1 - Rudel, Thomas T1 - The Transcriptional Landscape of Chlamydia pneumoniae N2 - Background: Gene function analysis of the obligate intracellular bacterium Chlamydia pneumoniae is hampered by the facts that this organism is inaccessible to genetic manipulations and not cultivable outside the host. The genomes of several strains have been sequenced; however, very little information is available on the gene structure and transcriptome of C. pneumoniae. Results: Using a differential RNA-sequencing approach with specific enrichment of primary transcripts, we defined the transcriptome of purified elementary bodies and reticulate bodies of C. pneumoniae strain CWL-029; 565 transcriptional start sites of annotated genes and novel transcripts were mapped. Analysis of adjacent genes for cotranscription revealed 246 polycistronic transcripts. In total, a distinct transcription start site or an affiliation to an operon could be assigned to 862 out of 1,074 annotated protein coding genes. Semi-quantitative analysis of mapped cDNA reads revealed significant differences for 288 genes in the RNA levels of genes isolated from elementary bodies and reticulate bodies. We have identified and in part confirmed 75 novel putative non-coding RNAs. The detailed map of transcription start sites at single nucleotide resolution allowed for the first time a comprehensive and saturating analysis of promoter consensus sequences in Chlamydia. Conclusions: The precise transcriptional landscape as a complement to the genome sequence will provide new insights into the organization, control and function of genes. Novel non-coding RNAs and identified common promoter motifs will help to understand gene regulation of this important human pathogen. KW - Chlamydia pneumoniae Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-69116 ER - TY - JOUR A1 - Merget, Benjamin A1 - Koetschan, Christian A1 - Hackl, Thomas A1 - Förster, Frank A1 - Dandekar, Thomas A1 - Müller, Tobias A1 - Schultz, Jörg A1 - Wolf, Matthias T1 - The ITS2 Database JF - Journal of Visual Expression N2 - The internal transcribed spacer 2 (ITS2) has been used as a phylogenetic marker for more than two decades. As ITS2 research mainly focused on the very variable ITS2 sequence, it confined this marker to low-level phylogenetics only. However, the combination of the ITS2 sequence and its highly conserved secondary structure improves the phylogenetic resolution1 and allows phylogenetic inference at multiple taxonomic ranks, including species delimitation. The ITS2 Database presents an exhaustive dataset of internal transcribed spacer 2 sequences from NCBI GenBank accurately reannotated. Following an annotation by profile Hidden Markov Models (HMMs), the secondary structure of each sequence is predicted. First, it is tested whether a minimum energy based fold (direct fold) results in a correct, four helix conformation. If this is not the case, the structure is predicted by homology modeling. In homology modeling, an already known secondary structure is transferred to another ITS2 sequence, whose secondary structure was not able to fold correctly in a direct fold. The ITS2 Database is not only a database for storage and retrieval of ITS2 sequence-structures. It also provides several tools to process your own ITS2 sequences, including annotation, structural prediction, motif detection and BLAST search on the combined sequence-structure information. Moreover, it integrates trimmed versions of 4SALE and ProfDistS for multiple sequence-structure alignment calculation and Neighbor Joining tree reconstruction. Together they form a coherent analysis pipeline from an initial set of sequences to a phylogeny based on sequence and secondary structure. In a nutshell, this workbench simplifies first phylogenetic analyses to only a few mouse-clicks, while additionally providing tools and data for comprehensive large-scale analyses. KW - homology modeling KW - molecular systematics KW - internal transcribed spacer 2 KW - alignment KW - genetics KW - secondary structure KW - ribosomal RNA KW - phylogenetic tree KW - phylogeny Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-124600 VL - 61 IS - e3806 ER -