TY - JOUR A1 - Nickerson, David A1 - Atalag, Koray A1 - de Bono, Bernard A1 - Geiger, Jörg A1 - Goble, Carole A1 - Hollmann, Susanne A1 - Lonien, Joachim A1 - Müller, Wolfgang A1 - Regierer, Babette A1 - Stanford, Natalie J. A1 - Golebiewski, Martin A1 - Hunter, Peter T1 - The Human Physiome: how standards, software and innovative service infrastructures are providing the building blocks to make it achievable JF - Interface Focus N2 - Reconstructing and understanding the Human Physiome virtually is a complex mathematical problem, and a highly demanding computational challenge. Mathematical models spanning from the molecular level through to whole populations of individuals must be integrated, then personalized. This requires interoperability with multiple disparate and geographically separated data sources, and myriad computational software tools. Extracting and producing knowledge from such sources, even when the databases and software are readily available, is a challenging task. Despite the difficulties, researchers must frequently perform these tasks so that available knowledge can be continually integrated into the common framework required to realize the Human Physiome. Software and infrastructures that support the communities that generate these, together with their underlying standards to format, describe and interlink the corresponding data and computer models, are pivotal to the Human Physiome being realized. They provide the foundations for integrating, exchanging and re-using data and models efficiently, and correctly, while also supporting the dissemination of growing knowledge in these forms. In this paper, we explore the standards, software tooling, repositories and infrastructures that support this work, and detail what makes them vital to realizing the Human Physiome. KW - Human Physiome KW - standards KW - repositories KW - service infrastructure KW - reproducible science KW - managing big data Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-189584 VL - 6 IS - 2 ER - TY - JOUR A1 - Heurich, Marco A1 - Zeis, Klara A1 - Küchenhoff, Helmut A1 - Müller, Jörg A1 - Belotti, Elisa A1 - Bufka, Luděk A1 - Woelfing, Benno T1 - Selective Predation of a Stalking Predator on Ungulate Prey JF - PLoS ONE N2 - Prey selection is a key factor shaping animal populations and evolutionary dynamics. An optimal forager should target prey that offers the highest benefits in terms of energy content at the lowest costs. Predators are therefore expected to select for prey of optimal size. Stalking predators do not pursue their prey long, which may lead to a more random choice of prey individuals. Due to difficulties in assessing the composition of available prey populations, data on prey selection of stalking carnivores are still scarce. We show how the stalking predator Eurasian lynx (Lynx lynx) selects prey individuals based on species identity, age, sex and individual behaviour. To address the difficulties in assessing prey population structure, we confirm inferred selection patterns by using two independent data sets: (1) data of 387 documented kills of radio-collared lynx were compared to the prey population structure retrieved from systematic camera trapping using Manly’s standardized selection ratio alpha and (2) data on 120 radio-collared roe deer were analysed using a Cox proportional hazards model. Among the larger red deer prey, lynx selected against adult males—the largest and potentially most dangerous prey individuals. In roe deer lynx preyed selectively on males and did not select for a specific age class. Activity during high risk periods reduced the risk of falling victim to a lynx attack. Our results suggest that the stalking predator lynx actively selects for size, while prey behaviour induces selection by encounter and stalking success rates. KW - stalking predators KW - prey selection KW - Lynx lynx Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-166827 VL - 11 IS - 8 ER - TY - JOUR A1 - Müller, Anna A. A1 - Dolowschiak, Tamas A1 - Sellin, Mikael E. A1 - Felmy, Boas A1 - Verbree, Carolin A1 - Gadient, Sandra A1 - Westermann, Alexander J. A1 - Vogel, Jörg A1 - LeibundGut-Landmann, Salome A1 - Hardt, Wolf-Dietrich T1 - An NK Cell Perforin Response Elicited via IL-18 Controls Mucosal Inflammation Kinetics during Salmonella Gut Infection JF - PLoS Pathogens N2 - Salmonella Typhimurium (S.Tm) is a common cause of self-limiting diarrhea. The mucosal inflammation is thought to arise from a standoff between the pathogen's virulence factors and the host's mucosal innate immune defenses, particularly the mucosal NAIP/NLRC4 inflammasome. However, it had remained unclear how this switches the gut from homeostasis to inflammation. This was studied using the streptomycin mouse model. S.Tm infections in knockout mice, cytokine inhibition and –injection experiments revealed that caspase-1 (not -11) dependent IL-18 is pivotal for inducing acute inflammation. IL-18 boosted NK cell chemoattractants and enhanced the NK cells' migratory capacity, thus promoting mucosal accumulation of mature, activated NK cells. NK cell depletion and Prf\(^{-/-}\) ablation (but not granulocyte-depletion or T-cell deficiency) delayed tissue inflammation. Our data suggest an NK cell perforin response as one limiting factor in mounting gut mucosal inflammation. Thus, IL-18-elicited NK cell perforin responses seem to be critical for coordinating mucosal inflammation during early infection, when S.Tm strongly relies on virulence factors detectable by the inflammasome. This may have broad relevance for mucosal defense against microbial pathogens. KW - NK cells KW - Salmonella Typhimurium KW - mucosal inflammation KW - diarrhea Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-167429 VL - 12 IS - 6 ER -