TY - JOUR A1 - Hollenhorst, Monika I. A1 - Jurastow, Innokentij A1 - Nandigama, Rajender A1 - Appenzeller, Silke A1 - Li, Lei A1 - Vogel, Jörg A1 - Wiederhold, Stephanie A1 - Althaus, Mike A1 - Empting, Martin A1 - Altmüller, Janine A1 - Hirsch, Anna K. H. A1 - Flockerzi, Veit A1 - Canning, Brendan J. A1 - Saliba, Antoine‐Emmanuel A1 - Krasteva‐Christ, Gabriela T1 - Tracheal brush cells release acetylcholine in response to bitter tastants for paracrine and autocrine signaling JF - The FASEB Journal N2 - For protection from inhaled pathogens many strategies have evolved in the airways such as mucociliary clearance and cough. We have previously shown that protective respiratory reflexes to locally released bacterial bitter “taste” substances are most probably initiated by tracheal brush cells (BC). Our single‐cell RNA‐seq analysis of murine BC revealed high expression levels of cholinergic and bitter taste signaling transcripts (Tas2r108, Gnat3, Trpm5). We directly demonstrate the secretion of acetylcholine (ACh) from BC upon stimulation with the Tas2R agonist denatonium. Inhibition of the taste transduction cascade abolished the increase in [Ca\(^{2+}\)]\(_{i}\) in BC and subsequent ACh‐release. ACh‐release is regulated in an autocrine manner. While the muscarinic ACh‐receptors M3R and M1R are activating, M2R is inhibitory. Paracrine effects of ACh released in response to denatonium included increased [Ca\(^{2+}\)]\(_{i}\) in ciliated cells. Stimulation by denatonium or with Pseudomonas quinolone signaling molecules led to an increase in mucociliary clearance in explanted tracheae that was Trpm5‐ and M3R‐mediated. We show that ACh‐release from BC via the bitter taste cascade leads to immediate paracrine protective responses that can be boosted in an autocrine manner. This mechanism represents the initial step for the activation of innate immune responses against pathogens in the airways. KW - acetylcholine KW - brush cells KW - mucociliary clearance KW - single‐cell RNA‐seq KW - taste Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-213516 VL - 34 IS - 1 SP - 316 EP - 332 ER - TY - JOUR A1 - Hennessen, Fabienne A1 - Miethke, Marcus A1 - Zaburannyi, Nestor A1 - Loose, Maria A1 - Lukežič, Tadeja A1 - Bernecker, Steffen A1 - Hüttel, Stephan A1 - Jansen, Rolf A1 - Schmiedel, Judith A1 - Fritzenwanker, Moritz A1 - Imirzalioglu, Can A1 - Vogel, Jörg A1 - Westermann, Alexander J. A1 - Hesterkamp, Thomas A1 - Stadler, Marc A1 - Wagenlehner, Florian A1 - Petković, Hrvoje A1 - Herrmann, Jennifer A1 - Müller, Rolf T1 - Amidochelocardin overcomes resistance mechanisms exerted on tetracyclines and natural chelocardin JF - Antibiotics N2 - The reassessment of known but neglected natural compounds is a vital strategy for providing novel lead structures urgently needed to overcome antimicrobial resistance. Scaffolds with resistance-breaking properties represent the most promising candidates for a successful translation into future therapeutics. Our study focuses on chelocardin, a member of the atypical tetracyclines, and its bioengineered derivative amidochelocardin, both showing broad-spectrum antibacterial activity within the ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) panel. Further lead development of chelocardins requires extensive biological and chemical profiling to achieve favorable pharmaceutical properties and efficacy. This study shows that both molecules possess resistance-breaking properties enabling the escape from most common tetracycline resistance mechanisms. Further, we show that these compounds are potent candidates for treatment of urinary tract infections due to their in vitro activity against a large panel of multidrug-resistant uropathogenic clinical isolates. In addition, the mechanism of resistance to natural chelocardin was identified as relying on efflux processes, both in the chelocardin producer Amycolatopsis sulphurea and in the pathogen Klebsiella pneumoniae. Resistance development in Klebsiella led primarily to mutations in ramR, causing increased expression of the acrAB-tolC efflux pump. Most importantly, amidochelocardin overcomes this resistance mechanism, revealing not only the improved activity profile but also superior resistance-breaking properties of this novel antibacterial compound. KW - chelocardins KW - atypical tetracyclines KW - broad-spectrum antibiotics KW - clinical isolates KW - uropathogens KW - urinary tract infection (UTI) KW - resistance-breaking properties KW - mechanism of resistance KW - AcrAB-TolC efflux pump Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-213149 SN - 2079-6382 VL - 9 IS - 9 ER - TY - JOUR A1 - Schulte, Leon N. A1 - Schweinlin, Matthias A1 - Westermann, Alexander J. A1 - Janga, Harshavardhan A1 - Santos, Sara C. A1 - Appenzeller, Silke A1 - Walles, Heike A1 - Vogel, Jörg A1 - Metzger, Marco T1 - An Advanced Human Intestinal Coculture Model Reveals Compartmentalized Host and Pathogen Strategies during Salmonella Infection JF - mBio N2 - A major obstacle in infection biology is the limited ability to recapitulate human disease trajectories in traditional cell culture and animal models, which impedes the translation of basic research into clinics. Here, we introduce a three-dimensional (3D) intestinal tissue model to study human enteric infections at a level of detail that is not achieved by conventional two-dimensional monocultures. Our model comprises epithelial and endothelial layers, a primary intestinal collagen scaffold, and immune cells. Upon Salmonella infection, the model mimics human gastroenteritis, in that it restricts the pathogen to the epithelial compartment, an advantage over existing mouse models. Application of dual transcriptome sequencing to the Salmonella-infected model revealed the communication of epithelial, endothelial, monocytic, and natural killer cells among each other and with the pathogen. Our results suggest that Salmonella uses its type III secretion systems to manipulate STAT3-dependent inflammatory responses locally in the epithelium without accompanying alterations in the endothelial compartment. Our approach promises to reveal further human-specific infection strategies employed by Salmonella and other pathogens. IMPORTANCE Infection research routinely employs in vitro cell cultures or in vivo mouse models as surrogates of human hosts. Differences between murine and human immunity and the low level of complexity of traditional cell cultures, however, highlight the demand for alternative models that combine the in vivo-like properties of the human system with straightforward experimental perturbation. Here, we introduce a 3D tissue model comprising multiple cell types of the human intestinal barrier, a primary site of pathogen attack. During infection with the foodborne pathogen Salmonella enterica serovar Typhimurium, our model recapitulates human disease aspects, including pathogen restriction to the epithelial compartment, thereby deviating from the systemic infection in mice. Combination of our model with state-of-the-art genetics revealed Salmonella-mediated local manipulations of human immune responses, likely contributing to the establishment of the pathogen's infection niche. We propose the adoption of similar 3D tissue models to infection biology, to advance our understanding of molecular infection strategies employed by bacterial pathogens in their human host. KW - Salmonella KW - gene expression KW - infectious disease Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-229428 VL - 11, 2020 IS - 1 ER - TY - JOUR A1 - Bauriedl, Saskia A1 - Gerovac, Milan A1 - Heidrich, Nadja A1 - Bischler, Thorsten A1 - Barquist, Lars A1 - Vogel, Jörg A1 - Schoen, Christoph T1 - The minimal meningococcal ProQ protein has an intrinsic capacity for structure-based global RNA recognition JF - Nature Communications N2 - FinO-domain proteins are a widespread family of bacterial RNA-binding proteins with regulatory functions. Their target spectrum ranges from a single RNA pair, in the case of plasmid-encoded FinO, to global RNA regulons, as with enterobacterial ProQ. To assess whether the FinO domain itself is intrinsically selective or promiscuous, we determine in vivo targets of Neisseria meningitidis, which consists of solely a FinO domain. UV-CLIP-seq identifies associations with 16 small non-coding sRNAs and 166 mRNAs. Meningococcal ProQ predominantly binds to highly structured regions and generally acts to stabilize its RNA targets. Loss of ProQ alters transcript levels of >250 genes, demonstrating that this minimal ProQ protein impacts gene expression globally. Phenotypic analyses indicate that ProQ promotes oxidative stress resistance and DNA damage repair. We conclude that FinO domain proteins recognize some abundant type of RNA shape and evolve RNA binding selectivity through acquisition of additional regions that constrain target recognition. FinO-domain proteins are bacterial RNA-binding proteins with a wide range of target specificities. Here, the authors employ UV CLIP-seq and show that minimal ProQ protein of Neisseria meningitidis binds to various small non-coding RNAs and mRNAs involved in virulence. KW - Neisseria meningitidis KW - natural transformation KW - dual function KW - FinO family KW - HFQ KW - chaperone KW - transcriptome KW - regulator KW - sequence KW - in vivo Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-230040 VL - 11 ER - TY - JOUR A1 - Müller, Anna A. A1 - Dolowschiak, Tamas A1 - Sellin, Mikael E. A1 - Felmy, Boas A1 - Verbree, Carolin A1 - Gadient, Sandra A1 - Westermann, Alexander J. A1 - Vogel, Jörg A1 - LeibundGut-Landmann, Salome A1 - Hardt, Wolf-Dietrich T1 - An NK Cell Perforin Response Elicited via IL-18 Controls Mucosal Inflammation Kinetics during Salmonella Gut Infection JF - PLoS Pathogens N2 - Salmonella Typhimurium (S.Tm) is a common cause of self-limiting diarrhea. The mucosal inflammation is thought to arise from a standoff between the pathogen's virulence factors and the host's mucosal innate immune defenses, particularly the mucosal NAIP/NLRC4 inflammasome. However, it had remained unclear how this switches the gut from homeostasis to inflammation. This was studied using the streptomycin mouse model. S.Tm infections in knockout mice, cytokine inhibition and –injection experiments revealed that caspase-1 (not -11) dependent IL-18 is pivotal for inducing acute inflammation. IL-18 boosted NK cell chemoattractants and enhanced the NK cells' migratory capacity, thus promoting mucosal accumulation of mature, activated NK cells. NK cell depletion and Prf\(^{-/-}\) ablation (but not granulocyte-depletion or T-cell deficiency) delayed tissue inflammation. Our data suggest an NK cell perforin response as one limiting factor in mounting gut mucosal inflammation. Thus, IL-18-elicited NK cell perforin responses seem to be critical for coordinating mucosal inflammation during early infection, when S.Tm strongly relies on virulence factors detectable by the inflammasome. This may have broad relevance for mucosal defense against microbial pathogens. KW - NK cells KW - Salmonella Typhimurium KW - mucosal inflammation KW - diarrhea Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-167429 VL - 12 IS - 6 ER - TY - JOUR A1 - Michaux, Charlotte A1 - Gerovac, Milan A1 - Hansen, Elisabeth E. A1 - Barquist, Lars A1 - Vogel, Jörg T1 - Grad-seq analysis of Enterococcus faecalis and Enterococcus faecium provides a global view of RNA and protein complexes in these two opportunistic pathogens JF - microLife N2 - Enterococcus faecalis and Enterococcus faecium are major nosocomial pathogens. Despite their relevance to public health and their role in the development of bacterial antibiotic resistance, relatively little is known about gene regulation in these species. RNA–protein complexes serve crucial functions in all cellular processes associated with gene expression, including post-transcriptional control mediated by small regulatory RNAs (sRNAs). Here, we present a new resource for the study of enterococcal RNA biology, employing the Grad-seq technique to comprehensively predict complexes formed by RNA and proteins in E. faecalis V583 and E. faecium AUS0004. Analysis of the generated global RNA and protein sedimentation profiles led to the identification of RNA–protein complexes and putative novel sRNAs. Validating our data sets, we observe well-established cellular RNA–protein complexes such as the 6S RNA–RNA polymerase complex, suggesting that 6S RNA-mediated global control of transcription is conserved in enterococci. Focusing on the largely uncharacterized RNA-binding protein KhpB, we use the RIP-seq technique to predict that KhpB interacts with sRNAs, tRNAs, and untranslated regions of mRNAs, and might be involved in the processing of specific tRNAs. Collectively, these datasets provide departure points for in-depth studies of the cellular interactome of enterococci that should facilitate functional discovery in these and related Gram-positive species. Our data are available to the community through a user-friendly Grad-seq browser that allows interactive searches of the sedimentation profiles (https://resources.helmholtz-hiri.de/gradseqef/). KW - Enterococcus faecalis KW - Enterococcus faecium KW - Grad-seq KW - KhpB protein Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-313311 VL - 4 ER - TY - JOUR A1 - Homberger, Christina A1 - Barquist, Lars A1 - Vogel, Jörg T1 - Ushering in a new era of single-cell transcriptomics in bacteria JF - microLife N2 - Transcriptome analysis of individual cells by single-cell RNA-seq (scRNA-seq) has become routine for eukaryotic tissues, even being applied to whole multicellular organisms. In contrast, developing methods to read the transcriptome of single bacterial cells has proven more challenging, despite a general perception of bacteria as much simpler than eukaryotes. Bacterial cells are harder to lyse, their RNA content is about two orders of magnitude lower than that of eukaryotic cells, and bacterial mRNAs are less stable than their eukaryotic counterparts. Most importantly, bacterial transcripts lack functional poly(A) tails, precluding simple adaptation of popular standard eukaryotic scRNA-seq protocols that come with the double advantage of specific mRNA amplification and concomitant depletion of rRNA. However, thanks to very recent breakthroughs in methodology, bacterial scRNA-seq is now feasible. This short review will discuss recently published bacterial scRNA-seq approaches (MATQ-seq, microSPLiT, and PETRI-seq) and a spatial transcriptomics approach based on multiplexed in situ hybridization (par-seqFISH). Together, these novel approaches will not only enable a new understanding of cell-to-cell variation in bacterial gene expression, they also promise a new microbiology by enabling high-resolution profiling of gene activity in complex microbial consortia such as the microbiome or pathogens as they invade, replicate, and persist in host tissue. KW - single-cell RNA-seq KW - heterogeneity KW - microSPLiT KW - PETRI-seq KW - MATQ-seq KW - par-seqFISH Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-313292 VL - 3 ER - TY - JOUR A1 - Yu, Sung-Huan A1 - Vogel, Jörg A1 - Förstner, Konrad U. T1 - ANNOgesic: a Swiss army knife for the RNA-seq based annotation of bacterial/archaeal genomes JF - GigaScience N2 - To understand the gene regulation of an organism of interest, a comprehensive genome annotation is essential. While some features, such as coding sequences, can be computationally predicted with high accuracy based purely on the genomic sequence, others, such as promoter elements or noncoding RNAs, are harder to detect. RNA sequencing (RNA-seq) has proven to be an efficient method to identify these genomic features and to improve genome annotations. However, processing and integrating RNA-seq data in order to generate high-resolution annotations is challenging, time consuming, and requires numerous steps. We have constructed a powerful and modular tool called ANNOgesic that provides the required analyses and simplifies RNA-seq-based bacterial and archaeal genome annotation. It can integrate data from conventional RNA-seq and differential RNA-seq and predicts and annotates numerous features, including small noncoding RNAs, with high precision. The software is available under an open source license (ISCL) at https://pypi.org/project/ANNOgesic/. KW - genome annotation KW - RNA-seq KW - transcriptomics Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-178942 VL - 7 ER - TY - JOUR A1 - Gerova, Milan A1 - Wicke, Laura A1 - Chihara, Kotaro A1 - Schneider, Cornelius A1 - Lavigne, Rob A1 - Vogel, Jörg T1 - A grad-seq view of RNA and protein complexes in Pseudomonas aeruginosa under standard and bacteriophage predation conditions JF - mbio N2 - The Gram-negative rod-shaped bacterium Pseudomonas aeruginosa is not only a major cause of nosocomial infections but also serves as a model species of bacterial RNA biology. While its transcriptome architecture and posttranscriptional regulation through the RNA-binding proteins Hfq, RsmA, and RsmN have been studied in detail, global information about stable RNA-protein complexes in this human pathogen is currently lacking. Here, we implement gradient profiling by sequencing (Grad-seq) in exponentially growing P. aeruginosa cells to comprehensively predict RNA and protein complexes, based on glycerol gradient sedimentation profiles of >73% of all transcripts and ∼40% of all proteins. As to benchmarking, our global profiles readily reported complexes of stable RNAs of P. aeruginosa, including 6S RNA with RNA polymerase and associated product RNAs (pRNAs). We observe specific clusters of noncoding RNAs, which correlate with Hfq and RsmA/N, and provide a first hint that P. aeruginosa expresses a ProQ-like FinO domain-containing RNA-binding protein. To understand how biological stress may perturb cellular RNA/protein complexes, we performed Grad-seq after infection by the bacteriophage ΦKZ. This model phage, which has a well-defined transcription profile during host takeover, displayed efficient translational utilization of phage mRNAs and tRNAs, as evident from their increased cosedimentation with ribosomal subunits. Additionally, Grad-seq experimentally determines previously overlooked phage-encoded noncoding RNAs. Taken together, the Pseudomonas protein and RNA complex data provided here will pave the way to a better understanding of RNA-protein interactions during viral predation of the bacterial cell. IMPORTANCE Stable complexes by cellular proteins and RNA molecules lie at the heart of gene regulation and physiology in any bacterium of interest. It is therefore crucial to globally determine these complexes in order to identify and characterize new molecular players and regulation mechanisms. Pseudomonads harbor some of the largest genomes known in bacteria, encoding ∼5,500 different proteins. Here, we provide a first glimpse on which proteins and cellular transcripts form stable complexes in the human pathogen Pseudomonas aeruginosa. We additionally performed this analysis with bacteria subjected to the important and frequently encountered biological stress of a bacteriophage infection. We identified several molecules with established roles in a variety of cellular pathways, which were affected by the phage and can now be explored for their role during phage infection. Most importantly, we observed strong colocalization of phage transcripts and host ribosomes, indicating the existence of specialized translation mechanisms during phage infection. All data are publicly available in an interactive and easy to use browser. KW - Grad-seq KW - Pseudomonas KW - UKZ KW - bacteriophage KW - infection KW - Pseudomonas aeruginosa KW - RNA-binding proteins KW - noncoding RNA KW - phage Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-259054 VL - 12 IS - 1 ER - TY - JOUR A1 - Vogel, Jörg T1 - An RNA biology perspective on species‐specific programmable RNA antibiotics JF - Molecular Microbiology N2 - Our body is colonized by a vast array of bacteria the sum of which forms our microbiota. The gut alone harbors >1,000 bacterial species. An understanding of their individual or synergistic contributions to human health and disease demands means to interfere with their functions on the species level. Most of the currently available antibiotics are broad‐spectrum, thus too unspecific for a selective depletion of a single species of interest from the microbiota. Programmable RNA antibiotics in the form of short antisense oligonucleotides (ASOs) promise to achieve precision manipulation of bacterial communities. These ASOs are coupled to small peptides that carry them inside the bacteria to silence mRNAs of essential genes, for example, to target antibiotic‐resistant pathogens as an alternative to standard antibiotics. There is already proof‐of‐principle with diverse bacteria, but many open questions remain with respect to true species specificity, potential off‐targeting, choice of peptides for delivery, bacterial resistance mechanisms and the host response. While there is unlikely a one‐fits‐all solution for all microbiome species, I will discuss how recent progress in bacterial RNA biology may help to accelerate the development of programmable RNA antibiotics for microbiome editing and other applications. KW - antibiotic KW - microbiome KW - RNA-seq KW - small RNA Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-214869 VL - 113 IS - 3 SP - 550 EP - 559 ER -