TY - JOUR A1 - Vogel, Sebastian A1 - Gossner, Martin M. A1 - Mergner, Ulrich A1 - Müller, Jörg A1 - Thorn, Simon T1 - Optimizing enrichment of deadwood for biodiversity by varying sun exposure and tree species: An experimental approach JF - Journal of Applied Ecology N2 - The enrichment of deadwood is essential for the conservation of saproxylic biodiversity in managed forests. However, existing strategies focus on a cost‐intensive increase of deadwood amount, while largely neglecting increasing deadwood diversity. Deadwood objects, that is logs and branches, from six tree species were experimentally sun exposed, canopy shaded and artificially shaded for 4 years, after which the alpha‐, beta‐ and gamma‐diversity of saproxylic beetles, wood‐inhabiting fungi and spiders were analysed. Analyses of beta‐diversity included the spatial distance between exposed deadwood objects. A random‐drawing procedure was used to identify the combination of tree species and sun exposure that yielded the highest gamma‐diversity at a minimum of exposed deadwood amount. In sun‐exposed plots, species numbers in logs were higher than in shaded plots for all taxa, while in branches we observed the opposite for saproxylic beetles. Tree species affected the species numbers only of saproxylic beetles and wood‐inhabiting fungi. The beta‐diversity of saproxylic beetles and wood‐inhabiting fungi among logs was influenced by sun exposure and tree species, but beta‐diversity of spiders by sun exposure only. For all saproxylic taxa recorded in logs, differences between communities increased with increasing spatial distance. A combination of canopy‐shaded Carpinus logs and sun‐exposed Populus logs resulted in the highest species numbers of all investigated saproxylic taxa among all possible combinations of tree species and sun‐exposure treatments. Synthesis and applications. We recommend incorporating the enrichment of different tree species and particularly the variation in sun exposure into existing strategies of deadwood enrichment. Based on the results of our study, we suggest to combine the logs of softwood broadleaf tree species (e.g. Carpinus, Populus), hardwood broadleaf tree species (e.g. Quercus) and coniferous tree species (e.g. Pinus) under different conditions of sun exposure and distribute them spatially in a landscape to maximize the beneficial effects on overall diversity. KW - broadleaf tree species KW - deadwood enrichment KW - forest conservation KW - forest management KW - saproxylic beetles KW - spiders KW - sun exposure KW - wood‐inhabiting fungi Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-214614 VL - 57 IS - 10 SP - 2075 EP - 2085 ER - TY - JOUR A1 - Müller, Jörg A1 - Ulyshen, Mike A1 - Seibold, Sebastian A1 - Cadotte, Marc A1 - Chao, Anne A1 - Bässler, Claus A1 - Vogel, Sebastian A1 - Hagge, Jonas A1 - Weiß, Ingmar A1 - Baldrian, Petr A1 - Tláskal, Vojtěch A1 - Thorn, Simon T1 - Primary determinants of communities in deadwood vary among taxa but are regionally consistent JF - Oikos N2 - The evolutionary split between gymnosperms and angiosperms has far‐reaching implications for the current communities colonizing trees. The inherent characteristics of dead wood include its role as a spatially scattered habitat of plant tissue, transient in time. Thus, local assemblages in deadwood forming a food web in a necrobiome should be affected not only by dispersal ability but also by host tree identity, the decay stage and local abiotic conditions. However, experiments simultaneously manipulating these potential community drivers in deadwood are lacking. To disentangle the importance of spatial distance and microclimate, as well as host identity and decay stage as drivers of local assemblages, we conducted two consecutive experiments, a 2‐tree species and 6‐tree species experiment with 80 and 72 tree logs, respectively, located in canopy openings and under closed canopies of a montane and a lowland forest. We sampled saproxylic beetles, spiders, fungi and bacterial assemblages from logs. Variation partitioning for community metrics based on a unified framework of Hill numbers showed consistent results for both studies: host identity was most important for sporocarp‐detected fungal assemblages, decay stage and host tree for DNA‐detected fungal assemblages, microclimate and decay stage for beetles and spiders and decay stage for bacteria. Spatial distance was of minor importance for most taxa but showed the strongest effects for arthropods. The contrasting patterns among the taxa highlight the need for multi‐taxon analyses in identifying the importance of abiotic and biotic drivers of community composition. Moreover, the consistent finding of microclimate as the primary driver for saproxylic beetles compared to host identity shows, for the first time that existing evolutionary host adaptions can be outcompeted by local climate conditions in deadwood. KW - deadwood experiments KW - dispersal KW - forest management KW - habitat filter KW - wood-inhabiting fungi Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-228201 VL - 129 IS - 10 SP - 1579 EP - 1588 ER - TY - JOUR A1 - Gerova, Milan A1 - Wicke, Laura A1 - Chihara, Kotaro A1 - Schneider, Cornelius A1 - Lavigne, Rob A1 - Vogel, Jörg T1 - A grad-seq view of RNA and protein complexes in Pseudomonas aeruginosa under standard and bacteriophage predation conditions JF - mbio N2 - The Gram-negative rod-shaped bacterium Pseudomonas aeruginosa is not only a major cause of nosocomial infections but also serves as a model species of bacterial RNA biology. While its transcriptome architecture and posttranscriptional regulation through the RNA-binding proteins Hfq, RsmA, and RsmN have been studied in detail, global information about stable RNA-protein complexes in this human pathogen is currently lacking. Here, we implement gradient profiling by sequencing (Grad-seq) in exponentially growing P. aeruginosa cells to comprehensively predict RNA and protein complexes, based on glycerol gradient sedimentation profiles of >73% of all transcripts and ∼40% of all proteins. As to benchmarking, our global profiles readily reported complexes of stable RNAs of P. aeruginosa, including 6S RNA with RNA polymerase and associated product RNAs (pRNAs). We observe specific clusters of noncoding RNAs, which correlate with Hfq and RsmA/N, and provide a first hint that P. aeruginosa expresses a ProQ-like FinO domain-containing RNA-binding protein. To understand how biological stress may perturb cellular RNA/protein complexes, we performed Grad-seq after infection by the bacteriophage ΦKZ. This model phage, which has a well-defined transcription profile during host takeover, displayed efficient translational utilization of phage mRNAs and tRNAs, as evident from their increased cosedimentation with ribosomal subunits. Additionally, Grad-seq experimentally determines previously overlooked phage-encoded noncoding RNAs. Taken together, the Pseudomonas protein and RNA complex data provided here will pave the way to a better understanding of RNA-protein interactions during viral predation of the bacterial cell. IMPORTANCE Stable complexes by cellular proteins and RNA molecules lie at the heart of gene regulation and physiology in any bacterium of interest. It is therefore crucial to globally determine these complexes in order to identify and characterize new molecular players and regulation mechanisms. Pseudomonads harbor some of the largest genomes known in bacteria, encoding ∼5,500 different proteins. Here, we provide a first glimpse on which proteins and cellular transcripts form stable complexes in the human pathogen Pseudomonas aeruginosa. We additionally performed this analysis with bacteria subjected to the important and frequently encountered biological stress of a bacteriophage infection. We identified several molecules with established roles in a variety of cellular pathways, which were affected by the phage and can now be explored for their role during phage infection. Most importantly, we observed strong colocalization of phage transcripts and host ribosomes, indicating the existence of specialized translation mechanisms during phage infection. All data are publicly available in an interactive and easy to use browser. KW - Grad-seq KW - Pseudomonas KW - UKZ KW - bacteriophage KW - infection KW - Pseudomonas aeruginosa KW - RNA-binding proteins KW - noncoding RNA KW - phage Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-259054 VL - 12 IS - 1 ER - TY - JOUR A1 - Vogel, Jörg T1 - An RNA biology perspective on species‐specific programmable RNA antibiotics JF - Molecular Microbiology N2 - Our body is colonized by a vast array of bacteria the sum of which forms our microbiota. The gut alone harbors >1,000 bacterial species. An understanding of their individual or synergistic contributions to human health and disease demands means to interfere with their functions on the species level. Most of the currently available antibiotics are broad‐spectrum, thus too unspecific for a selective depletion of a single species of interest from the microbiota. Programmable RNA antibiotics in the form of short antisense oligonucleotides (ASOs) promise to achieve precision manipulation of bacterial communities. These ASOs are coupled to small peptides that carry them inside the bacteria to silence mRNAs of essential genes, for example, to target antibiotic‐resistant pathogens as an alternative to standard antibiotics. There is already proof‐of‐principle with diverse bacteria, but many open questions remain with respect to true species specificity, potential off‐targeting, choice of peptides for delivery, bacterial resistance mechanisms and the host response. While there is unlikely a one‐fits‐all solution for all microbiome species, I will discuss how recent progress in bacterial RNA biology may help to accelerate the development of programmable RNA antibiotics for microbiome editing and other applications. KW - antibiotic KW - microbiome KW - RNA-seq KW - small RNA Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-214869 VL - 113 IS - 3 SP - 550 EP - 559 ER - TY - JOUR A1 - Hershko-Shalev, Tal A1 - Odenheimer-Bergman, Ahuva A1 - Elgrably-Weiss, Maya A1 - Ben-Zvi, Tamar A1 - Govindarajan, Sutharsan A1 - Seri, Hemda A1 - Papenfort, Kai A1 - Vogel, Jörg A1 - Altuvia, Shoshy T1 - Gifsy-1 Prophage IsrK with Dual Function as Small and Messenger RNA Modulates Vital Bacterial Machineries JF - PLoS Genetics N2 - While an increasing number of conserved small regulatory RNAs (sRNAs) are known to function in general bacterial physiology, the roles and modes of action of sRNAs from horizontally acquired genomic regions remain little understood. The IsrK sRNA of Gifsy-1 prophage of Salmonella belongs to the latter class. This regulatory RNA exists in two isoforms. The first forms, when a portion of transcripts originating from isrK promoter reads-through the IsrK transcription-terminator producing a translationally inactive mRNA target. Acting in trans, the second isoform, short IsrK RNA, binds the inactive transcript rendering it translationally active. By switching on translation of the first isoform, short IsrK indirectly activates the production of AntQ, an antiterminator protein located upstream of isrK. Expression of antQ globally interferes with transcription termination resulting in bacterial growth arrest and ultimately cell death. Escherichia coli and Salmonella cells expressing AntQ display condensed chromatin morphology and localization of UvrD to the nucleoid. The toxic phenotype of AntQ can be rescued by co-expression of the transcription termination factor, Rho, or RNase H, which protects genomic DNA from breaks by resolving R-loops. We propose that AntQ causes conflicts between transcription and replication machineries and thus promotes DNA damage. The isrK locus represents a unique example of an island-encoded sRNA that exerts a highly complex regulatory mechanism to tune the expression of a toxic protein. KW - prophage KW - Gifsy-1 KW - sRNA KW - IsrK Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-166717 VL - 12 IS - 4 ER - TY - JOUR A1 - Strahl, André A1 - Gerlich, Christian A1 - Alpers, Georg W. A1 - Ehrmann, Katja A1 - Gehrke, Jörg A1 - Müller-Garnn, Annette A1 - Vogel, Heiner T1 - Development and evaluation of a standardized peer-training in the context of peer review for quality assurance in work capacity evaluation JF - BMC Medical Education N2 - Background: The German quality assurance programme for evaluating work capacity is based on peer review that evaluates the quality of medical experts' reports. Low reliability is thought to be due to systematic differences among peers. For this purpose, we developed a curriculum for a standardized peer-training (SPT). This study investigates, whether the SPT increases the inter-rater reliability of social medical physicians participating in a cross-institutional peer review. Methods: Forty physicians from 16 regional German Pension Insurances were subjected to SPT. The three-day training course consist of nine educational objectives recorded in a training manual. The SPT is split into a basic module providing basic information about the peer review and an advanced module for small groups of up to 12 peers training peer review using medical reports. Feasibility was tested by assessing selection, comprehensibility and subjective use of contents delivered, the trainers' delivery and design of training materials. The effectiveness of SPT was determined by evaluating peer concordance using three anonymised medical reports assessed by each peer. Percentage agreement and Fleiss' kappa (κ\(_m\)) were calculated. Concordance was compared with review results from a previous unstructured, non-standardized peer-training programme (control condition) performed by 19 peers from 12 German Pension Insurances departments. The control condition focused exclusively on the application of peer review in small groups. No specifically training materials, methods and trainer instructions were used. Results: Peer-training was shown to be feasible. The level of subjective confidence in handling the peer review instrument varied between 70 and 90%. Average percentage agreement for the main outcome criterion was 60.2%, resulting in a κ\(_m\) of 0.39. By comparison, the average percentage concordance was 40.2% and the κ\(_m\) was 0.12 for the control condition. Conclusion: Concordance with the main criterion was relevant but not significant (p = 0.2) higher for SPT than for the control condition. Fleiss' kappa coefficient showed that peer concordance was higher for SPT than randomly expected. Nevertheless, a score of 0.39 for the main criterion indicated only fair inter-rater reliability, considerably lower than the conventional standard of 0.7 for adequate reliability. KW - inter-rater reliability KW - peer review KW - quality assurance KW - training curriculum KW - work capacity evaluation Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-175738 VL - 18 IS - 135 ER - TY - JOUR A1 - Tawk, Caroline A1 - Sharan, Malvika A1 - Eulalio, Ana A1 - Vogel, Jörg T1 - A systematic analysis of the RNA-targeting potential of secreted bacterial effector proteins JF - Scientific Reports N2 - Many pathogenic bacteria utilize specialized secretion systems to deliver proteins called effectors into eukaryotic cells for manipulation of host pathways. The vast majority of known effector targets are host proteins, whereas a potential targeting of host nucleic acids remains little explored. There is only one family of effectors known to target DNA directly, and effectors binding host RNA are unknown. Here, we take a two-pronged approach to search for RNA-binding effectors, combining biocomputational prediction of RNA-binding domains (RBDs) in a newly assembled comprehensive dataset of bacterial secreted proteins, and experimental screening for RNA binding in mammalian cells. Only a small subset of effectors were predicted to carry an RBD, indicating that if RNA targeting was common, it would likely involve new types of RBDs. Our experimental evaluation of effectors with predicted RBDs further argues for a general paucity of RNA binding activities amongst bacterial effectors. We obtained evidence that PipB2 and Lpg2844, effector proteins of Salmonella and Legionella species, respectively, may harbor novel biochemical activities. Our study presenting the first systematic evaluation of the RNA-targeting potential of bacterial effectors offers a basis for discussion of whether or not host RNA is a prominent target of secreted bacterial proteins. KW - pathogens KW - bacterial secretion Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-158815 VL - 7 ER - TY - JOUR A1 - Westermann, Alexander J. A1 - Venturini, Elisa A1 - Sellin, Mikael E. A1 - Förstner, Konrad U. A1 - Hardt, Wolf-Dietrich A1 - Vogel, Jörg T1 - The major RNA-binding protein ProQ impacts virulence gene expression in Salmonella enterica serovar Typhimurium JF - mBio N2 - FinO domain proteins such as ProQ of the model pathogen Salmonella enterica have emerged as a new class of major RNA-binding proteins in bacteria. ProQ has been shown to target hundreds of transcripts, including mRNAs from many virulence regions, but its role, if any, in bacterial pathogenesis has not been studied. Here, using a Dual RNA-seq approach to profile ProQ-dependent gene expression changes as Salmonella infects human cells, we reveal dysregulation of bacterial motility, chemotaxis, and virulence genes which is accompanied by altered MAPK (mitogen-activated protein kinase) signaling in the host. Comparison with the other major RNA chaperone in Salmonella, Hfq, reinforces the notion that these two global RNA-binding proteins work in parallel to ensure full virulence. Of newly discovered infection-associated ProQ-bound small noncoding RNAs (sRNAs), we show that the 3′UTR-derived sRNA STnc540 is capable of repressing an infection-induced magnesium transporter mRNA in a ProQ-dependent manner. Together, this comprehensive study uncovers the relevance of ProQ for Salmonella pathogenesis and highlights the importance of RNA-binding proteins in regulating bacterial virulence programs. IMPORTANCE The protein ProQ has recently been discovered as the centerpiece of a previously overlooked “third domain” of small RNA-mediated control of gene expression in bacteria. As in vitro work continues to reveal molecular mechanisms, it is also important to understand how ProQ affects the life cycle of bacterial pathogens as these pathogens infect eukaryotic cells. Here, we have determined how ProQ shapes Salmonella virulence and how the activities of this RNA-binding protein compare with those of Hfq, another central protein in RNA-based gene regulation in this and other bacteria. To this end, we apply global transcriptomics of pathogen and host cells during infection. In doing so, we reveal ProQ-dependent transcript changes in key virulence and host immune pathways. Moreover, we differentiate the roles of ProQ from those of Hfq during infection, for both coding and noncoding transcripts, and provide an important resource for those interested in ProQ-dependent small RNAs in enteric bacteria. KW - Hfq KW - noncoding RNA KW - ProQ KW - RNA-seq KW - bacterial pathogen KW - posttranscriptional control Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-177722 VL - 10 IS - 1 ER - TY - JOUR A1 - Vogel, Sebastian A1 - Bussler, Heinz A1 - Finnberg, Sven A1 - Müller, Jörg A1 - Stengel, Elisa A1 - Thorn, Simon T1 - Diversity and conservation of saproxylic beetles in 42 European tree species: an experimental approach using early successional stages of branches JF - Insect Conservation and Diversity N2 - Tree species diversity is important to maintain saproxylic beetle diversity in managed forests. Yet, knowledge about the conservational importance of single tree species and implications for forest management and conservation practices are lacking. We exposed freshly cut branch‐bundles of 42 tree species, representing tree species native and non‐native to Europe, under sun‐exposed and shaded conditions for 1 year. Afterwards, communities of saproxylic beetles were reared ex situ for 2 years. We tested for the impact of tree species and sun exposure on alpha‐, beta‐, and gamma‐diversity as well as composition of saproxylic beetle communities. Furthermore, the number of colonised tree species by each saproxylic beetle species was determined. Tree species had a lower impact on saproxylic beetle communities compared to sun exposure. The diversity of saproxylic beetles varied strongly among tree species, with highest alpha‐ and gamma‐diversity found in Quercus petraea. Red‐listed saproxylic beetle species occurred ubiquitously among tree species. We found distinct differences in the community composition of broadleaved and coniferous tree species, native and non‐native tree species as well as sun‐exposed and shaded deadwood. Our study enhances the understanding of the importance of previously understudied and non‐native tree species for the diversity of saproxylic beetles. To improve conservation practices for saproxylic beetles and especially red‐listed species, we suggest a stronger incorporation of tree species diversity and sun exposure of into forest management strategies, including the enrichment of deadwood from native and with a specific focus on locally rare or silviculturally less important tree species. KW - deadwood KW - deadwood enrichment KW - decay KW - forest management KW - host specificity Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-218401 VL - 14 IS - 1 SP - 132 EP - 143 ER - TY - JOUR A1 - Sharan, Malvika A1 - Förstner, Konrad U. A1 - Eulalio, Ana A1 - Vogel, Jörg T1 - APRICOT: an integrated computational pipeline for the sequence-based identification and characterization of RNA-binding proteins JF - Nucleic Acids Research N2 - RNA-binding proteins (RBPs) have been established as core components of several post-transcriptional gene regulation mechanisms. Experimental techniques such as cross-linking and co-immunoprecipitation have enabled the identification of RBPs, RNA-binding domains (RBDs) and their regulatory roles in the eukaryotic species such as human and yeast in large-scale. In contrast, our knowledge of the number and potential diversity of RBPs in bacteria is poorer due to the technical challenges associated with the existing global screening approaches. We introduce APRICOT, a computational pipeline for the sequence-based identification and characterization of proteins using RBDs known from experimental studies. The pipeline identifies functional motifs in protein sequences using position-specific scoring matrices and Hidden Markov Models of the functional domains and statistically scores them based on a series of sequence-based features. Subsequently, APRICOT identifies putative RBPs and characterizes them by several biological properties. Here we demonstrate the application and adaptability of the pipeline on large-scale protein sets, including the bacterial proteome of Escherichia coli. APRICOT showed better performance on various datasets compared to other existing tools for the sequence-based prediction of RBPs by achieving an average sensitivity and specificity of 0.90 and 0.91 respectively. The command-line tool and its documentation are available at https://pypi.python.org/pypi/bio-apricot. KW - RNA-binding proteins KW - identification KW - characterization Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-157963 VL - 45 IS - 11 ER - TY - JOUR A1 - Strahl, André A1 - Gerlich, Christian A1 - Alpers, Georg W. A1 - Gehrke, Jörg A1 - Müller-Garnn, Annette A1 - Vogel, Heiner T1 - An instrument for quality assurance in work capacity evaluation: development, evaluation, and inter-rater reliability JF - BMC Health Services Research N2 - Background: Employees insured in pension insurance, who are incapable of working due to ill health, are entitled to a disability pension. To assess whether an individual meets the medical requirements to be considered as disabled, a work capacity evaluation is conducted. However, there are no official guidelines on how to perform an external quality assurance for this evaluation process. Furthermore, the quality of medical reports in the field of insurance medicine can vary substantially, and systematic evaluations are scarce. Reliability studies using peer review have repeatedly shown insufficient ability to distinguish between high, moderate and low quality. Considering literature recommendations, we developed an instrument to examine the quality of medical experts’reports. Methods: The peer review manual developed contains six quality domains (formal structure, clarity, transparency, completeness, medical-scientific principles, and efficiency) comprising 22 items. In addition, a superordinate criterion (survey confirmability) rank the overall quality and usefulness of a report. This criterion evaluates problems of innerlogic and reasoning. Development of the manual was assisted by experienced physicians in a pre-test. We examined the observable variance in peer judgements and reliability as the most important outcome criteria. To evaluate inter-rater reliability, 20 anonymous experts’ reports detailing the work capacity evaluation were reviewed by 19 trained raters (peers). Percentage agreement and Kendall’s W, a reliability measure of concordance between two or more peers, were calculated. A total of 325 reviews were conducted. Results: Agreement of peer judgements with respect to the superordinate criterion ranged from 29.2 to 87.5%. Kendall’s W for the quality domain items varied greatly, ranging from 0.09 to 0.88. With respect to the superordinate criterion, Kendall’s W was 0.39, which indicates fair agreement. The results of the percentage agreement revealed systemic peer preferences for certain deficit scale categories. Conclusion: The superordinate criterion was not sufficiently reliable. However, in comparison to other reliability studies, this criterion showed an equivalent reliability value. This report aims to encourage further efforts to improve evaluation instruments. To reduce disagreement between peer judgments, we propose the revision of the peer review instrumentand the development and implementation of a standardized rater training to improve reliability. KW - work capacity evaluation KW - insurance medicine KW - quality assurance KW - peer review KW - reliability Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-200289 VL - 19 ER - TY - JOUR A1 - Thorn, Simon A1 - Seibold, Sebastian A1 - Leverkus, Alexandro B A1 - Michler, Thomas A1 - Müller, Jörg A1 - Noss, Reed F A1 - Stork, Nigel A1 - Vogel, Sebastian A1 - Lindenmayer, David B T1 - The living dead: acknowledging life after tree death to stop forest degradation JF - Frontiers in Ecology and the Environment N2 - Global sustainability agendas focus primarily on halting deforestation, yet the biodiversity crisis resulting from the degradation of remaining forests is going largely unnoticed. Forest degradation occurs through the loss of key ecological structures, such as dying trees and deadwood, even in the absence of deforestation. One of the main drivers of forest degradation is limited awareness by policy makers and the public on the importance of these structures for supporting forest biodiversity and ecosystem function. Here, we outline management strategies to protect forest health and biodiversity by maintaining and promoting deadwood, and propose environmental education initiatives to improve the general awareness of the importance of deadwood. Finally, we call for major reforms to forest management to maintain and restore deadwood; large, old trees; and other key ecological structures. KW - forest degradation KW - biodiversity KW - deadwood Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-218575 VL - 18 IS - 9 SP - 505 EP - 512 ER - TY - JOUR A1 - Heidrich, Nadja A1 - Bauriedl, Saskia A1 - Barquist, Lars A1 - Li, Lei A1 - Schoen, Christoph A1 - Vogel, Jörg T1 - The primary transcriptome of Neisseria meningitidis and its interaction with the RNA chaperone Hfq JF - Nucleic Acids Research N2 - Neisseria meningitidis is a human commensal that can also cause life-threatening meningitis and septicemia. Despite growing evidence for RNA-based regulation in meningococci, their transcriptome structure and output of regulatory small RNAs (sRNAs) are incompletely understood. Using dRNA-seq, we have mapped at single-nucleotide resolution the primary transcriptome of N. meningitidis strain 8013. Annotation of 1625 transcriptional start sites defines transcription units for most protein-coding genes but also reveals a paucity of classical σ70-type promoters, suggesting the existence of activators that compensate for the lack of −35 consensus sequences in N. meningitidis. The transcriptome maps also reveal 65 candidate sRNAs, a third of which were validated by northern blot analysis. Immunoprecipitation with the RNA chaperone Hfq drafts an unexpectedly large post-transcriptional regulatory network in this organism, comprising 23 sRNAs and hundreds of potential mRNA targets. Based on this data, using a newly developed gfp reporter system we validate an Hfq-dependent mRNA repression of the putative colonization factor PrpB by the two trans-acting sRNAs RcoF1/2. Our genome-wide RNA compendium will allow for a better understanding of meningococcal transcriptome organization and riboregulation with implications for colonization of the human nasopharynx. KW - RNA KW - Neisseria meningitidis KW - dRNA-seq KW - transcriptome KW - RNA chaperone Hfq Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170828 VL - 45 IS - 10 ER - TY - JOUR A1 - Michaux, Charlotte A1 - Hansen, Elisabeth E. A1 - Jenniches, Laura A1 - Gerovac, Milan A1 - Barquist, Lars A1 - Vogel, Jörg T1 - Single-Nucleotide RNA Maps for the Two Major Nosocomial Pathogens Enterococcus faecalis and Enterococcus faecium JF - Frontiers in Cellular and Infection Microbiology N2 - Enterococcus faecalis and faecium are two major representative clinical strains of the Enterococcus genus and are sadly notorious to be part of the top agents responsible for nosocomial infections. Despite their critical implication in worldwide public healthcare, essential and available resources such as deep transcriptome annotations remain poor, which also limits our understanding of post-transcriptional control small regulatory RNA (sRNA) functions in these bacteria. Here, using the dRNA-seq technique in combination with ANNOgesic analysis, we successfully mapped and annotated transcription start sites (TSS) of both E. faecalis V583 and E. faecium AUS0004 at single nucleotide resolution. Analyzing bacteria in late exponential phase, we capture ~40% (E. faecalis) and 43% (E. faecium) of the annotated protein-coding genes, determine 5′ and 3′ UTR (untranslated region) length, and detect instances of leaderless mRNAs. The transcriptome maps revealed sRNA candidates in both bacteria, some found in previous studies and new ones. Expression of candidate sRNAs is being confirmed under biologically relevant environmental conditions. This comprehensive global TSS mapping atlas provides a valuable resource for RNA biology and gene expression analysis in the Enterococci. It can be accessed online at www.helmholtz-hiri.de/en/datasets/enterococcus through an instance of the genomic viewer JBrowse. KW - transcription start sites KW - RNA-seq KW - sRNA atlas KW - Gram-positive bacteria KW - post-transcriptional regulation Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-217947 SN - 2235-2988 VL - 10 ER - TY - JOUR A1 - Okuda, Takumi A1 - Lenz, Ann-Kathrin A1 - Seitz, Florian A1 - Vogel, Jörg A1 - Höbartner, Claudia T1 - A SAM analogue-utilizing ribozyme for site-specific RNA alkylation in living cells JF - Nature Chemistry N2 - Post-transcriptional RNA modification methods are in high demand for site-specific RNA labelling and analysis of RNA functions. In vitro-selected ribozymes are attractive tools for RNA research and have the potential to overcome some of the limitations of chemoenzymatic approaches with repurposed methyltransferases. Here we report an alkyltransferase ribozyme that uses a synthetic, stabilized S-adenosylmethionine (SAM) analogue and catalyses the transfer of a propargyl group to a specific adenosine in the target RNA. Almost quantitative conversion was achieved within 1 h under a wide range of reaction conditions in vitro, including physiological magnesium ion concentrations. A genetically encoded version of the SAM analogue-utilizing ribozyme (SAMURI) was expressed in HEK293T cells, and intracellular propargylation of the target adenosine was confirmed by specific fluorescent labelling. SAMURI is a general tool for the site-specific installation of the smallest tag for azide-alkyne click chemistry, which can be further functionalized with fluorophores, affinity tags or other functional probes. KW - Alkyltransferase Ribozyme SAMURI KW - Site-specific RNA labelling KW - bioorthogonal SAM analogue ProSeDMA KW - Chemical modification KW - RNA Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-328762 ER - TY - JOUR A1 - McFleder, Rhonda L. A1 - Makhotkina, Anastasiia A1 - Groh, Janos A1 - Keber, Ursula A1 - Imdahl, Fabian A1 - Peña Mosca, Josefina A1 - Peteranderl, Alina A1 - Wu, Jingjing A1 - Tabuchi, Sawako A1 - Hoffmann, Jan A1 - Karl, Ann-Kathrin A1 - Pagenstecher, Axel A1 - Vogel, Jörg A1 - Beilhack, Andreas A1 - Koprich, James B. A1 - Brotchie, Jonathan M. A1 - Saliba, Antoine-Emmanuel A1 - Volkmann, Jens A1 - Ip, Chi Wang T1 - Brain-to-gut trafficking of alpha-synuclein by CD11c\(^+\) cells in a mouse model of Parkinson’s disease JF - Nature Communications N2 - Inflammation in the brain and gut is a critical component of several neurological diseases, such as Parkinson’s disease (PD). One trigger of the immune system in PD is aggregation of the pre-synaptic protein, α-synuclein (αSyn). Understanding the mechanism of propagation of αSyn aggregates is essential to developing disease-modifying therapeutics. Using a brain-first mouse model of PD, we demonstrate αSyn trafficking from the brain to the ileum of male mice. Immunohistochemistry revealed that the ileal αSyn aggregations are contained within CD11c+ cells. Using single-cell RNA sequencing, we demonstrate that ileal CD11c\(^+\) cells are microglia-like and the same subtype of cells is activated in the brain and ileum of PD mice. Moreover, by utilizing mice expressing the photo-convertible protein, Dendra2, we show that CD11c\(^+\) cells traffic from the brain to the ileum. Together these data provide a mechanism of αSyn trafficking between the brain and gut. KW - antigen-presenting cells KW - neuroimmunology KW - Parkinson's disease Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-357696 VL - 14 ER - TY - JOUR A1 - Däullary, Thomas A1 - Imdahl, Fabian A1 - Dietrich, Oliver A1 - Hepp, Laura A1 - Krammer, Tobias A1 - Fey, Christina A1 - Neuhaus, Winfried A1 - Metzger, Marco A1 - Vogel, Jörg A1 - Westermann, Alexander J. A1 - Saliba, Antoine-Emmanuel A1 - Zdzieblo, Daniela T1 - A primary cell-based in vitro model of the human small intestine reveals host olfactomedin 4 induction in response to Salmonella Typhimurium infection JF - Gut Microbes N2 - Infection research largely relies on classical cell culture or mouse models. Despite having delivered invaluable insights into host-pathogen interactions, both have limitations in translating mechanistic principles to human pathologies. Alternatives can be derived from modern Tissue Engineering approaches, allowing the reconstruction of functional tissue models in vitro. Here, we combined a biological extracellular matrix with primary tissue-derived enteroids to establish an in vitro model of the human small intestinal epithelium exhibiting in vivo-like characteristics. Using the foodborne pathogen Salmonella enterica serovar Typhimurium, we demonstrated the applicability of our model to enteric infection research in the human context. Infection assays coupled to spatio-temporal readouts recapitulated the established key steps of epithelial infection by this pathogen in our model. Besides, we detected the upregulation of olfactomedin 4 in infected cells, a hitherto unrecognized aspect of the host response to Salmonella infection. Together, this primary human small intestinal tissue model fills the gap between simplistic cell culture and animal models of infection, and shall prove valuable in uncovering human-specific features of host-pathogen interplay. KW - intestinal enteroids KW - biological scaffold KW - Salmonella Typhimurium KW - OLFM4 KW - NOTCH KW - filamentous Salmonella Typhimurium KW - bacterial migration KW - bacterial virulence KW - 3D tissue model KW - olfactomedin 4 KW - infection Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-350451 VL - 15 IS - 1 ER - TY - JOUR A1 - Homberger, Christina A1 - Hayward, Regan J. A1 - Barquist, Lars A1 - Vogel, Jörg T1 - Improved bacterial single-cell RNA-seq through automated MATQ-seq and Cas9-based removal of rRNA reads JF - mBio N2 - Bulk RNA sequencing technologies have provided invaluable insights into host and bacterial gene expression and associated regulatory networks. Nevertheless, the majority of these approaches report average expression across cell populations, hiding the true underlying expression patterns that are often heterogeneous in nature. Due to technical advances, single-cell transcriptomics in bacteria has recently become reality, allowing exploration of these heterogeneous populations, which are often the result of environmental changes and stressors. In this work, we have improved our previously published bacterial single-cell RNA sequencing (scRNA-seq) protocol that is based on multiple annealing and deoxycytidine (dC) tailing-based quantitative scRNA-seq (MATQ-seq), achieving a higher throughput through the integration of automation. We also selected a more efficient reverse transcriptase, which led to reduced cell loss and higher workflow robustness. Moreover, we successfully implemented a Cas9-based rRNA depletion protocol into the MATQ-seq workflow. Applying our improved protocol on a large set of single Salmonella cells sampled over different growth conditions revealed improved gene coverage and a higher gene detection limit compared to our original protocol and allowed us to detect the expression of small regulatory RNAs, such as GcvB or CsrB at a single-cell level. In addition, we confirmed previously described phenotypic heterogeneity in Salmonella in regard to expression of pathogenicity-associated genes. Overall, the low percentage of cell loss and high gene detection limit makes the improved MATQ-seq protocol particularly well suited for studies with limited input material, such as analysis of small bacterial populations in host niches or intracellular bacteria. IMPORTANCE: Gene expression heterogeneity among isogenic bacteria is linked to clinically relevant scenarios, like biofilm formation and antibiotic tolerance. The recent development of bacterial single-cell RNA sequencing (scRNA-seq) enables the study of cell-to-cell variability in bacterial populations and the mechanisms underlying these phenomena. Here, we report a scRNA-seq workflow based on MATQ-seq with increased robustness, reduced cell loss, and improved transcript capture rate and gene coverage. Use of a more efficient reverse transcriptase and the integration of an rRNA depletion step, which can be adapted to other bacterial single-cell workflows, was instrumental for these improvements. Applying the protocol to the foodborne pathogen Salmonella, we confirmed transcriptional heterogeneity across and within different growth phases and demonstrated that our workflow captures small regulatory RNAs at a single-cell level. Due to low cell loss and high transcript capture rates, this protocol is uniquely suited for experimental settings in which the starting material is limited, such as infected tissues. KW - MATQ-seq KW - single-cell RNA-seq KW - Salmonella enterica KW - rRNA depletion KW - gene expression heterogeneity KW - DASH KW - Cas9 Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-350059 VL - 14 IS - 2 ER - TY - JOUR A1 - Müller, Laura S. M. A1 - Cosentino, Raúl O. A1 - Förstner, Konrad U. A1 - Guizetti, Julien A1 - Wedel, Carolin A1 - Kaplan, Noam A1 - Janzen, Christian J. A1 - Arampatzi, Panagiota A1 - Vogel, Jörg A1 - Steinbiss, Sascha A1 - Otto, Thomas D. A1 - Saliba, Antoine-Emmanuel A1 - Sebra, Robert P. A1 - Siegel, T. Nicolai T1 - Genome organization and DNA accessibility control antigenic variation in trypanosomes JF - Nature N2 - Many evolutionarily distant pathogenic organisms have evolved similar survival strategies to evade the immune responses of their hosts. These include antigenic variation, through which an infecting organism prevents clearance by periodically altering the identity of proteins that are visible to the immune system of the host1. Antigenic variation requires large reservoirs of immunologically diverse antigen genes, which are often generated through homologous recombination, as well as mechanisms to ensure the expression of one or very few antigens at any given time. Both homologous recombination and gene expression are affected by three-dimensional genome architecture and local DNA accessibility2,3. Factors that link three-dimensional genome architecture, local chromatin conformation and antigenic variation have, to our knowledge, not yet been identified in any organism. One of the major obstacles to studying the role of genome architecture in antigenic variation has been the highly repetitive nature and heterozygosity of antigen-gene arrays, which has precluded complete genome assembly in many pathogens. Here we report the de novo haplotype-specific assembly and scaffolding of the long antigen-gene arrays of the model protozoan parasite Trypanosoma brucei, using long-read sequencing technology and conserved features of chromosome folding4. Genome-wide chromosome conformation capture (Hi-C) reveals a distinct partitioning of the genome, with antigen-encoding subtelomeric regions that are folded into distinct, highly compact compartments. In addition, we performed a range of analyses—Hi-C, fluorescence in situ hybridization, assays for transposase-accessible chromatin using sequencing and single-cell RNA sequencing—that showed that deletion of the histone variants H3.V and H4.V increases antigen-gene clustering, DNA accessibility across sites of antigen expression and switching of the expressed antigen isoform, via homologous recombination. Our analyses identify histone variants as a molecular link between global genome architecture, local chromatin conformation and antigenic variation. KW - histone variants KW - genome architecture KW - single molecule real time (SMRT) KW - brucei genome KW - distance-dependent decay Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-224265 VL - 563 ER -