TY - JOUR A1 - Eisenreich, Wolfgang A1 - Rudel, Thomas A1 - Heesemann, Jürgen A1 - Goebel, Werner T1 - How viral and intracellular bacterial pathogens reprogram the metabolism of host cells to allow their intracellular replication JF - Frontiers in Cellular and Infection Microbiology N2 - Viruses and intracellular bacterial pathogens (IBPs) have in common the need of suitable host cells for efficient replication and proliferation during infection. In human infections, the cell types which both groups of pathogens are using as hosts are indeed quite similar and include phagocytic immune cells, especially monocytes/macrophages (MOs/MPs) and dendritic cells (DCs), as well as nonprofessional phagocytes, like epithelial cells, fibroblasts and endothelial cells. These terminally differentiated cells are normally in a metabolically quiescent state when they are encountered by these pathogens during infection. This metabolic state of the host cells does not meet the extensive need for nutrients required for efficient intracellular replication of viruses and especially IBPs which, in contrast to the viral pathogens, have to perform their own specific intracellular metabolism to survive and efficiently replicate in their host cell niches. For this goal, viruses and IBPs have to reprogram the host cell metabolism in a pathogen-specific manner to increase the supply of nutrients, energy, and metabolites which have to be provided to the pathogen to allow its replication. In viral infections, this appears to be often achieved by the interaction of specific viral factors with central metabolic regulators, including oncogenes and tumor suppressors, or by the introduction of virus-specific oncogenes. Less is so far known on the mechanisms leading to metabolic reprogramming of the host cell by IBPs. However, the still scant data suggest that similar mechanisms may also determine the reprogramming of the host cell metabolism in IBP infections. In this review, we summarize and compare the present knowledge on this important, yet still poorly understood aspect of pathogenesis of human viral and especially IBP infections. KW - metabolic adaptation KW - viruses KW - intracellular bacterial pathogens KW - metabolism of infected and uninfected host cells KW - reprogamming of host cell metabolism Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-197188 SN - 2235-2988 VL - 9 ER - TY - JOUR A1 - Eisenreich, Wolfgang A1 - Rudel, Thomas A1 - Heesemann, Jürgen A1 - Goebel, Werner T1 - Persistence of Intracellular Bacterial Pathogens—With a Focus on the Metabolic Perspective JF - Frontiers in Cellular and Infection Microbiology N2 - Persistence has evolved as a potent survival strategy to overcome adverse environmental conditions. This capability is common to almost all bacteria, including all human bacterial pathogens and likely connected to chronic infections caused by some of these pathogens. Although the majority of a bacterial cell population will be killed by the particular stressors, like antibiotics, oxygen and nitrogen radicals, nutrient starvation and others, a varying subpopulation (termed persisters) will withstand the stress situation and will be able to revive once the stress is removed. Several factors and pathways have been identified in the past that apparently favor the formation of persistence, such as various toxin/antitoxin modules or stringent response together with the alarmone (p)ppGpp. However, persistence can occur stochastically in few cells even of stress-free bacterial populations. Growth of these cells could then be induced by the stress conditions. In this review, we focus on the persister formation of human intracellular bacterial pathogens, some of which belong to the most successful persister producers but lack some or even all of the assumed persistence-triggering factors and pathways. We propose a mechanism for the persister formation of these bacterial pathogens which is based on their specific intracellular bipartite metabolism. We postulate that this mode of metabolism ultimately leads, under certain starvation conditions, to the stalling of DNA replication initiation which may be causative for the persister state. KW - persistence KW - mechanisms of persister formation KW - intracellular bacterial pathogens KW - stress conditions KW - ATP-DnaA complex KW - DNA replication initiation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-222348 SN - 2235-2988 VL - 10 ER - TY - JOUR A1 - Hacker, Jörg A1 - Ott, Manfred A1 - Blum, Gabriele A1 - Marre, Reinhard A1 - Heesemann, Jürgen A1 - Tschäpe, Helmut A1 - Goebel, Werner T1 - Genetics of Escherichia coli uropathogenicity: Analysis of the O6:K15:H31 isolate 536 N2 - E. coli strain 536 (06: K15: H31) isolated from a case of acute pyelonephritis, expresses S-fimbrial adhesins, P-related fimbriae, common type I fimbriae, and hemolysins. The respective chromosomally encoded determinants were cloned by constructing a genomic library of this strain. Furthermore, the strain produces the iron uptake substance, enterocheline, damages HeLa cells, and behaves in a serum-resistant mode. Genetic analysis of spontaneously arising non-hemolytic variants revealed that some of the virulence genes were physically linked to large unstable DNA regions, termed "pathogenicity islands", which were mapped in the respective positions on the E. coli K-12linkage map. By comparing the wild type strain and mutants in in vitro and in vivo assays, virulence features have been evaluated. In addition, a regulatory cross talk between adhesin determinants was found for the wild-type isolate. This particular mode of virulence regulation is missing in the mutant strain. KW - Escherichia coli KW - Genetik Y1 - 1992 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-71578 ER -