TY - JOUR A1 - Tacke, Reinhold A1 - Pikies, J. A1 - Wiesenberger, F. A1 - Ernst, L. A1 - Schomburg, D. A1 - Waelbroeck, M. A1 - Christophe, J. A1 - Lambrecht, G. A1 - Gross, J. A1 - Mutschler, E. T1 - Sila-biperiden und endo-Sila-biperiden: Synthesen, Kristallstrukturen und antimuscarinische Eigenschaften N2 - Starting from trichloro(vinyl)silane (Cl\(_3\)SiCH=CH\(_2\)), the musearinic antagonists sila-biperiden [rac-(SiRS,C2SR>-ao-2] and endosila- biperiden [rac-(SiRS,C2SR)-endo-2] were prepared by a seven-step synthesis. Both silanols are configurationally stableininert organic solvents but undergo slow epimerization in aqueous solution (pH 7.4, 32°C) by inversion of the configuration at the silicon atom. The relative configurations of sila-biperiden and endo-sila-biperiden were detennined by single-crystal X-ray diffraction. Both compounds form intennolecular 0-H · · · N hydrogen bonds in the crystal leading to the fonnation of centrosymmetric dimers (sila-biperiden) and infinite chains (endo-sila-biperiden), respectively. Sila-biperiden is a silicon analogue (C/Si exchange) of the antiparkinsonian drug biperiden [rac-(CRS/C2SR}-exo-1]. In functional phannacological experiments, as well as in radioligand competition studies, biperiden, sila-biperiden and endo-sila-biperiden behaved as simple competitive antagonists at muscarinic Ml-, M2-, M3- and M4-receptors. The three compounds displayed the highest affinity for Ml-receptors (pA\(_2\) values: 8.72-8.80; pK\(_i\) values: 8.8-9.1), intermediate affinity for M4- and M3-receptors, and lowest affinity for M2-receptors (pA\(_2\) values: 7.57-7.79; pK\(_i\) values: 7.7-7.8). The affinity profile (Ml >. M4 > M3 > M2) of biperiden, sila-biperiden and endo-sila-biperiden is qualitatively similar to that of the M1-selective muscarinic antagonist pirenzepine. The antimuscarinic properlies of the C/Si analogues biperiden and sila-biperiden are almost identical. N2 - Die Antimuscarinica Sila-biperiden [rac-(SiRS,C2SR)-exo-2] und endo-Sila-biperiden [rac-(SiRS,C2SR)-endo-2] wurden ausgehend von Trichlor(vinyl)silan (Cl\(_3\)SiCH=CH\(_2\)) durch eine siebenstufige Synthese dargestellt. Die beiden Silanoie sind in inerten organischen Solvenzien konfigurationsstabil, unterliegen aber in wässeriger Lösung (pH 7.4, 3ZOC) einer Epimerisierung durch Inversion der Konfiguration am Silicium-Atom. Die relativen Konfigurationen von Sila-biperiden und endo-Sila-biperiden wurden durch Einkristall-Röntgenstrukturanalysen bestimmt. Beide Verbindungen bilden im Kristall intermolekulare 0-H · · · N-Wasserstoff- Brückenbindungen aus, die zum Aufbau von zentrosymmetrischen Dimeren (Sila-biperiden) bzw. unendlichen Ketten (endo-Sila-biperiden) führen. Sila-biperiden ist ein Silicium-Analogon (C/Si-Austausch) des Antiparkinsonmittels Biperiden [rac-(CRS,C2SR>-ao-1). Sowohl in funktionellen pharmakologischen Untersuchungen als auch in Radioligand-Kompetitionsexperimenten erwiesen sich Biperiden, Sila-biperiden und endo-Sila-biperiden als rein kompetitive Antagonisten an muscarinischen M1-, M2-, M3- und M4-Rezeptoren. Alle drei Verbindungen zeigten die höchste Affinität zu den Mt-Rezeptoren (pA\(_2\)-Werte: 8.72-8.80; pKrWerte: 8.8-9.1), eine deutlich geringere Affinität zu den M4- und M3-Rezeptoren und die niedrigste Affinität zu den kardialen M2-Rezeptoren (pA\(_2\)-Werte: 7.57-7.79; pKi-Werte: 7.7-7.8). Das Affinitätsprofil (Ml > M4 > M3 > M2) von Biperiden, Sila-biperiden und endo-Sila-biperiden ist dem des Mt-selektiven Antimuscarinicums Pirenzepin qualitativ sehr ähnlich. Die antimuscarinischen Eigenschaften der C/Si-Analoga Biperiden und Sila-biperiden sind nahezu identisch. KW - Anorganische Chemie KW - Silicon KW - Silanol KW - Sila-biperiden KW - Bioorganosilicon chemistry KW - Muscarinic antagonist KW - Muscarinic receptor subtype Y1 - 1994 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-64303 ER - TY - JOUR A1 - Waelbroeck, M. A1 - Camus, J. A1 - Tastenoy, M. A1 - Lambrecht, G. A1 - Mutschler, E. A1 - Kropfgans, M. A1 - Sperlich, J. A1 - Wiesenberger, F. A1 - Tacke, R. A1 - Christophe, J. T1 - Thermodynamics of antagonist binding to rat muscarinic \(M_2\) receptors: antimuscarinics of the pridinol, sila-pridinol, diphenidol and sila-diphenidol type JF - British Journal of Pharmacology N2 - 1 We studied the effect of temperature on the binding to rat heart \(M_2\) muscarinic receptors of antagonists related to the carbon/silicon pairs pridinol/sila-pridinol and diphenidol/sila-diphenidol (including three germanium compounds) and six structurally related pairs of enantiomers [(R)- and (S)-procyclidine, (R)- and (S)-trihexyphenidyl, (R)- and (S)-tricyclamol, (R)- and (S)-trihexyphenidyl methiodide, (R)- and (S)-hexahydro-diphenidol and (R)- and (S)-hexbutinol]. Binding affinities were determined in competition experiments using \([^3H]\)-N-methyl-scopolamine chloride as radioligand. The reference drugs were scopolamine and N-methyl-scopolamine bromide. 2 The affinity of the antagonists either increased or decreased with temperature, van 't Hoff plots were linear in the 278–310°K temperature range. Binding of all antagonists was entropy driven. Enthalpy changes varied from large negative values (down to \(−29 kJ mol^{−1}\)) to large positive values (up to \(+ 30 kJ mol^{−1}\)). 3 (R)-configurated drugs had a 10 to 100 fold greater affinity for \(M_2\) receptors than the corresponding (S)-enantiomers. Enthalpy and entropy changes of the respective enantiomers were different but no consistent pattern was observed. 4 When silanols \((R_3SiOH)\) were compared to carbinols \((R_3COH)\), the affinity increase caused by C/Si exchange varied between 3 and 10 fold for achiral drugs but was negligible in the case of chiral drugs. Silanols induced more favourable enthalpy and less favourable entropy changes than the corresponding carbinols when binding. Organogermanium compounds \((R_4Ge)\) when compared to their silicon counterparts (R4Si) showed no significant difference in affinity as well as in enthalpy and entropy changes. 5 Exchange of a cyclohexyl by a phenyl moiety was associated with an increase or a decrease in drug affinity (depending on the absolute configuration in the case of chiral drugs) and generally also with a more favourable enthalpy change and a less favourable entropy change of drug binding. 6 Replacement of a pyrrolidino by a piperidino group and increasing the length of the alkylene chain bridging the amino group and the central carbon or silicon atom were associated with either an increase or a decrease of entropy and enthalpy changes of drug binding. However, there was no clear correlation between these structural variations and the thermodynamic effects. 7 Taken together, these results suggest that hydrogen bond-forming OH groups and, to a lesser extent, polarizable phenyl groups contribute significantly to the thermodynamics of interactions between these classes of muscarinic antagonists and \(M_2\) muscarinic receptors. KW - entropy KW - binding KW - M2 muscarinic receptors KW - thermodynamics KW - van 't Hoff plot KW - enthalpy Y1 - 1993 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-128439 VL - 109 IS - 2 ER - TY - JOUR A1 - Jiang, Yuxiang A1 - Oron, Tal Ronnen A1 - Clark, Wyatt T. A1 - Bankapur, Asma R. A1 - D'Andrea, Daniel A1 - Lepore, Rosalba A1 - Funk, Christopher S. A1 - Kahanda, Indika A1 - Verspoor, Karin M. A1 - Ben-Hur, Asa A1 - Koo, Da Chen Emily A1 - Penfold-Brown, Duncan A1 - Shasha, Dennis A1 - Youngs, Noah A1 - Bonneau, Richard A1 - Lin, Alexandra A1 - Sahraeian, Sayed M. E. A1 - Martelli, Pier Luigi A1 - Profiti, Giuseppe A1 - Casadio, Rita A1 - Cao, Renzhi A1 - Zhong, Zhaolong A1 - Cheng, Jianlin A1 - Altenhoff, Adrian A1 - Skunca, Nives A1 - Dessimoz, Christophe A1 - Dogan, Tunca A1 - Hakala, Kai A1 - Kaewphan, Suwisa A1 - Mehryary, Farrokh A1 - Salakoski, Tapio A1 - Ginter, Filip A1 - Fang, Hai A1 - Smithers, Ben A1 - Oates, Matt A1 - Gough, Julian A1 - Törönen, Petri A1 - Koskinen, Patrik A1 - Holm, Liisa A1 - Chen, Ching-Tai A1 - Hsu, Wen-Lian A1 - Bryson, Kevin A1 - Cozzetto, Domenico A1 - Minneci, Federico A1 - Jones, David T. A1 - Chapman, Samuel A1 - BKC, Dukka A1 - Khan, Ishita K. A1 - Kihara, Daisuke A1 - Ofer, Dan A1 - Rappoport, Nadav A1 - Stern, Amos A1 - Cibrian-Uhalte, Elena A1 - Denny, Paul A1 - Foulger, Rebecca E. A1 - Hieta, Reija A1 - Legge, Duncan A1 - Lovering, Ruth C. A1 - Magrane, Michele A1 - Melidoni, Anna N. A1 - Mutowo-Meullenet, Prudence A1 - Pichler, Klemens A1 - Shypitsyna, Aleksandra A1 - Li, Biao A1 - Zakeri, Pooya A1 - ElShal, Sarah A1 - Tranchevent, Léon-Charles A1 - Das, Sayoni A1 - Dawson, Natalie L. A1 - Lee, David A1 - Lees, Jonathan G. A1 - Sillitoe, Ian A1 - Bhat, Prajwal A1 - Nepusz, Tamás A1 - Romero, Alfonso E. A1 - Sasidharan, Rajkumar A1 - Yang, Haixuan A1 - Paccanaro, Alberto A1 - Gillis, Jesse A1 - Sedeño-Cortés, Adriana E. A1 - Pavlidis, Paul A1 - Feng, Shou A1 - Cejuela, Juan M. A1 - Goldberg, Tatyana A1 - Hamp, Tobias A1 - Richter, Lothar A1 - Salamov, Asaf A1 - Gabaldon, Toni A1 - Marcet-Houben, Marina A1 - Supek, Fran A1 - Gong, Qingtian A1 - Ning, Wei A1 - Zhou, Yuanpeng A1 - Tian, Weidong A1 - Falda, Marco A1 - Fontana, Paolo A1 - Lavezzo, Enrico A1 - Toppo, Stefano A1 - Ferrari, Carlo A1 - Giollo, Manuel A1 - Piovesan, Damiano A1 - Tosatto, Silvio C. E. A1 - del Pozo, Angela A1 - Fernández, José M. A1 - Maietta, Paolo A1 - Valencia, Alfonso A1 - Tress, Michael L. A1 - Benso, Alfredo A1 - Di Carlo, Stefano A1 - Politano, Gianfranco A1 - Savino, Alessandro A1 - Rehman, Hafeez Ur A1 - Re, Matteo A1 - Mesiti, Marco A1 - Valentini, Giorgio A1 - Bargsten, Joachim W. A1 - van Dijk, Aalt D. J. A1 - Gemovic, Branislava A1 - Glisic, Sanja A1 - Perovic, Vladmir A1 - Veljkovic, Veljko A1 - Almeida-e-Silva, Danillo C. A1 - Vencio, Ricardo Z. N. A1 - Sharan, Malvika A1 - Vogel, Jörg A1 - Kansakar, Lakesh A1 - Zhang, Shanshan A1 - Vucetic, Slobodan A1 - Wang, Zheng A1 - Sternberg, Michael J. E. A1 - Wass, Mark N. A1 - Huntley, Rachael P. A1 - Martin, Maria J. A1 - O'Donovan, Claire A1 - Robinson, Peter N. A1 - Moreau, Yves A1 - Tramontano, Anna A1 - Babbitt, Patricia C. A1 - Brenner, Steven E. A1 - Linial, Michal A1 - Orengo, Christine A. A1 - Rost, Burkhard A1 - Greene, Casey S. A1 - Mooney, Sean D. A1 - Friedberg, Iddo A1 - Radivojac, Predrag A1 - Veljkovic, Nevena T1 - An expanded evaluation of protein function prediction methods shows an improvement in accuracy JF - Genome Biology N2 - Background A major bottleneck in our understanding of the molecular underpinnings of life is the assignment of function to proteins. While molecular experiments provide the most reliable annotation of proteins, their relatively low throughput and restricted purview have led to an increasing role for computational function prediction. However, assessing methods for protein function prediction and tracking progress in the field remain challenging. Results We conducted the second critical assessment of functional annotation (CAFA), a timed challenge to assess computational methods that automatically assign protein function. We evaluated 126 methods from 56 research groups for their ability to predict biological functions using Gene Ontology and gene-disease associations using Human Phenotype Ontology on a set of 3681 proteins from 18 species. CAFA2 featured expanded analysis compared with CAFA1, with regards to data set size, variety, and assessment metrics. To review progress in the field, the analysis compared the best methods from CAFA1 to those of CAFA2. Conclusions The top-performing methods in CAFA2 outperformed those from CAFA1. This increased accuracy can be attributed to a combination of the growing number of experimental annotations and improved methods for function prediction. The assessment also revealed that the definition of top-performing algorithms is ontology specific, that different performance metrics can be used to probe the nature of accurate predictions, and the relative diversity of predictions in the biological process and human phenotype ontologies. While there was methodological improvement between CAFA1 and CAFA2, the interpretation of results and usefulness of individual methods remain context-dependent. KW - Protein function prediction KW - Disease gene prioritization Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-166293 VL - 17 IS - 184 ER - TY - JOUR A1 - Waelbroeck, M. A1 - Camus, J. A1 - Tastenoy, M. A1 - Mutschler, E. A1 - Strohmann, C. A1 - Tacke, Reinhold A1 - Schjelderup, L. A1 - Aasen, A. A1 - Lambrecht, G. A1 - Christophe, J. T1 - Stereoselective interaction of procyclidine, hexahydro-difenidol, hexbutinol and oxyphencyclimine, and of related antagonists, with four muscarinic receptors N2 - Wc invcstigatcd thc binding properlies of thc (R)- and (Sl-cnantiomcrs of thc muscarinic antagonists trihcxyphcnidyl, procyclidinc, hcxahydro-difcnidol. p-fluoro-hcxahydro-difcnidol. hcxbutinol, p-fluoro-hcxbutinnl. and thcir corrcsponding methiodidcs at muscarinic M\(_1\), M\(_2\)• M\(_3\) and M\(_4\) receptor subtypes. In addition. binding properlies of thc (R)- and (S)-cnantiomcrs of oxyphcncycliminc wcrc studicd. The {R)- cnantiomcrs (cutomcrs} of all the compounds had a grcatcr affinity than the (S)-isomcrs for thc four muscarinic rcccptor subtypcs. Thc binding pattcrns of thc (R)- and (S)-enantiomers wcrc gcncrally different. We did not obscrvc any gcncral corrclation hctwccn thc potcncy of thc high-affinity enantiomer and Lhc affinity ratio (cudismic ratio) of the two cnantiomcrs. Thc rcsuhs arc discusscd in tcrms of a 'four suhsitcs' binding modcl. KW - Anorganische Chemie KW - Muscarinic receptors KW - Hexahydro-difenidol KW - Oxyphencyclimine Y1 - 1992 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-64237 ER - TY - JOUR A1 - Waelbroeck, M. A1 - Tastenoy, M. A1 - Camus, J. A1 - Christophe, J. A1 - Strohmann, C. A1 - Linoh, H. A1 - Zilch, H. A1 - Tacke, Reinhold A1 - Mutschler, E. A1 - Lambrecht, G. T1 - Binding and functional properties of antimuscarinics of the hexocyclium/sila-hexocyclium and hexahydro-diphenidol/hexahydro-sila-diphenidol type to muscarinic receptor subtypes N2 - l In an attempt to assess the structural requirements for the musearlnie receptor selectivity of hexahydro-diphenidol (hexahydro-difenidol) and hexahydro-sila-diphenidol (hexahydro-sila-difenidol), a serles of structurally related C/Si pairs were investigated, along with atropine, pirenzepine and methoctramine, for their binding affinities in NB-OK 1 cells as well as in rat heart and pancreas. 2 The action of these antagonists at musearlnie receptors mediating negative inotropic responses in guinea-pig atrla and ileal contractions has also been assessed. 3 Antagonist binding data indicated that NB-OK 1 cells (M\(_1\) type) as weil as rat heart (cardiac type) and pancreas (glandularjsmooth muscle type) possess different muscarinic receptor subtypes. 4 A highly significant correlation was found between the binding affinities of the antagonists to muscarinic receptors in rat heart and pancreas, respectively, and the affinities to muscarinic receptors in guinea-pig atria and ileum. This implies that the musearlnie binding sites in rat heart and the receptors in guinea-pig atrla are essentially similar, but different from those in pancreas and ileum. 5 The antimuscarinic potency of hexahydro-diphenidol and hexahydro-sila-diphenidol at the three subtypes was inftuenced differently by structural modifications (e.g. quaternization). Different selectivity profiles for the antagonists were obtained, which makes these compounds useful tools to investigate further muscarinic receptor heterogeneity. lndeed, the tertiary analogues hexahydrodiphenidol (HHD) and hexahydro-sila-diphenidol (HHSiD) bad an M\(_1\) = glandularjsmooth muscle > cardiac selectivity profile, whereas the quaternary analogues HHD methiodide and HHSiD methiodide were M\(_1\) preferring (M\(_1\) > glandularjsmooth muscle, cardiac). KW - Anorganische Chemie Y1 - 1989 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-63944 ER - TY - JOUR A1 - Waelbroeck, M. A1 - Camus, J. A1 - Tastenoy, M. A1 - Lambrecht, G. A1 - Mutschler, E. A1 - Tacke, Reinhold A1 - Christophe, J. T1 - Stereoselectivity of procyclidine binding to muscarinic receptor subtypes M\(_1\), M\(_2\) and M\(_4\) N2 - The goals of the present study were: (1) to investigate thc binding properlies oi (R)- and (S)-procyclidine and two aehiral derivatives of muscarinic M\(_1\)• M\(_2\) and M\(_4\) receptor subtypes and (2) to identify the interaetions which allow these receptors to diseriminate between the two stereoisomers. (R)-Procyclidine showed a higher affinity for human neuroblastoma NB-OK 1 muscarinie M\(_1\) and rat striatum musearinie M\(_4\) receptors. a~ compared to rat cardiac M\(_2\) receptors. (S)-Procyclidine had a 130-iold lower affinity than (R)-procyclidine for M\(_1\) and M\(_4\) receptors. and a 40-fold lower affinity for M\(_2\) receptors. Pyrrinol. the aehiral diphenyl derivative with the eyclohexyl g.roup of (S}-procyclidine replaeed by a phenyl group, has an eight-fold lower affinity for M\(_1\) and M\(_4\) receptors. as eompared to (R)-procyclidine, and a three-fold lower affinity for M\(_2\) receptors. Hexahydro-procyclidine. the eorresponding achiral dicyclohexyl compound, had a 10- to 20-fold lower affinity than (R)-procyclidine for the three reeeptors. The inerease in binding free energy, which is observed when the phenyl and eyclohexyl groups of procyelidine are separately replaeed by cyclohexyJ and phenyl groups, respectively. was additive in the ease of M\(_1\)• M\(_2\) and M\(_4\) receptcrs. This indicates that the musearinic reeeptor s!ereoseleetivity was based on the eoexistence of two binding sites, one preferring a phenylrather than eyclohexyl group and the seeond preferring a cyclohexyl rather than a phenyl group. In addition. there were aiso binding sites for the hydroxy moiety and the protonated amino group of the ligands. The greater affinity and stereoselectivity of M\(_1\) and M\(_4\) muscarinic receptors for (R)-procyelidine reflected the better fit of the eyclohexyl group of (R)-procyclidine to the subsite of M\(_1\) and M\(_4\) as compared to M\(_2\) receptors. KW - Anorganische Chemie KW - Musearlnie M1 KW - receptors KW - Muscarinie M2 receptors KW - Musearinic M4 receptors KW - Pyrrinol KW - Hexahydro-procyclidine KW - Muscarinic receptors Y1 - 1990 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-64034 ER - TY - JOUR A1 - Waelbroeck, M. A1 - Camus, J. A1 - Tastenoy, M. A1 - Mutschler, E. A1 - Strohmann, C. A1 - Tacke, Reinhold A1 - Lambrecht, G. A1 - Christophe, J. T1 - Binding affinities of hexahydro-difenidol and hexahydro-sila-difenidol analogues at four muscarinic receptor subtypes: constitutional and stereochemical aspects N2 - Hexahydro-sila-difenidoJ and eight analogues behaved as simple cumpetitive inhibitors of eHJN·methyl·scopoJamine binding to homogenates frorn human neuroblastoma NB-OK 1 cells (M\(_1\) sites), rat heart (M\(_2\) sites), rat pancreas (M\(_3\) sites), and rat striatum 'B' sites (M\(_4\) sites). Pyrrolidino- and hexamethyleneimino analogues showed the same sekctivity profile as the parent compound. Hexahydro-sila-difenidol methiodide and the methiodide of p-fluoro-hexahydro·sila-difenidol had a fügher affinity but a lower selectivity than the tertiary amines. Compounds containing a p·methoxy, p-chJoro or p-fluoro substituent in the phenyl ring of hexahydro-sila-difenidol showed a qualitative)y similar selectivity profile as the parent compound (i.e., M\(_1\)= M\(_3\) = M\(_4\) >M\(_2\) ), but up to 16-fold lower affinities. o-Methoxy-hexahydro-sila-difenidol has a lower affinity than hexahydro-sila-difeni.:!o! at the four binding sites. lts selectivity profile (M\(_4\) > M\(_1\), M\(_3\) > M\(_2\) ) was different from hexahydro-sila-difenidol. Replacement of the centrat silicon atom of hexahydro-sila-difenidol, p-fluoro-hexahydro-sila-difenidol and thdr quatemary (N-methylated) analogues by a carbon atom did not change their binding affinities significantly. The iour muscarinic receptors showed a higher affinity for the (R)- than for the (S)-enantiomers of hexahydro-difenidol, p-fluorohexahydro-difenidol and their methiodides. The stereoselectivity varied depending on the receptor subtype and drug considered. KW - Anorganische Chemie KW - Muscarinic receptor antagonists (selective) KW - Hexahydro-sila-difenidol analogues KW - p-Fluoro-hexahydro-sila-difenidol KW - Stereoselectivity Y1 - 1991 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-64128 ER - TY - JOUR A1 - Waelbroeck, M. A1 - Camus, J. A1 - Tastenoy, M. A1 - Mutschler, E. A1 - Strohmann, C. A1 - Tacke, Reinhold A1 - Lambrecht, G. A1 - Christophe, J. T1 - Stereoselectivity of (R)- and (S)-hexahydro-difenidol binding to neuroblastoma M\(_1\), cardiac M\(_2\), pancreatic M\(_3\), and striatum M\(_4\) muscarinic receptors N2 - (R)-Hexahydro-difenidol has a higher affinity for M\(_1\) receptors in NB-OK 1 cells, pancreas M\(_3\) and striatum M\(_4\) receptors (pKi 7.9 to 8.3) than for cardiac M2 receptors (pKi 7 .0). (8)-Hexahydro-difenidol, by contrast, is nonselective (pKi 5.8 to 6.1). Our goal in the present study was to evaluate the importance ofthe hydrophobic phenyl, and cyclohexyl rings of hexahydro-difenidol for the stereoselectivity and reeeptor selectivity of hexahydro-difenidol binding to the four muscarinic receptors. Our results indieated that replacement of the phenyl ring of hexahydro-difenidol by a cyclohexyl group <~ dicyclidol) and ofthe cyclohexyl ring by a phenyl moiety <~ difenidol) indueed a !arge (4- to 80-fold) decrease in binding affinity for all musearlnie receptors. Difenidol had a signifieant preference for M\(_1\) , M\(_3\) , and M\(_4\) over M\(_2\) receptors; dicyclidol, by eontrast, had a greater affinity for M\(_1\) and M\(_4\) than for M\(_2\) and M\(_3\) receptors. The binding free energy deerease due to replacement ofthe phenyl and the cyelohexyl groups of(R)-hexahydro-difenidol by, respectively, a eyclohexyl and a phenyl moiety was almostadditive in the ease of M\(_4\) (striatum) binding sites. In the ease ofthe cardiac M\(_2\), pancreatic M\(_3\) , or NB-OK 1 M\(_1\) receptors the respective binding free energies were not eompletely additive. These results suggest that the four (R)-hexahydro-difenidol ''binding moieties" (phenyl, cyclohexyl, hydroxy, and protonated amino group) cannot simultaneously form optimal interaetions with the M\(_1\), M\(_2\), and M\(_3\) muscarinic receptors. When eaeh of the hydrophobic groups is modified, the position of the whole molecule, relative to the four subsites, was changed to allow an optimal overall interaction with the musearlnie receptor. KW - Anorganische Chemie KW - hexahydro-difenidol enantiomers KW - muscarinic receptor subtypes KW - stereoselective interaction KW - difenidol KW - dicyclidol Y1 - 1991 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-64135 ER - TY - JOUR A1 - Tran-Gia, Johannes A1 - Denis-Bacelar, Ana M. A1 - Ferreira, Kelley M. A1 - Robinson, Andrew P. A1 - Bobin, Christophe A1 - Bonney, Lara M. A1 - Calvert, Nicholas A1 - Collins, Sean M. A1 - Fenwick, Andrew J. A1 - Finocchiaro, Domenico A1 - Fioroni, Federica A1 - Giannopoulou, Katerina A1 - Grassi, Elisa A1 - Heetun, Warda A1 - Jewitt, Stephanie J. A1 - Kotzasarlidou, Maria A1 - Ljungberg, Michael A1 - Lourenço, Valérie A1 - McGowan, Daniel R. A1 - Mewburn-Crook, Jamie A1 - Sabot, Benoit A1 - Scuffham, James A1 - Sjögreen Gleisner, Katarina A1 - Solc, Jaroslav A1 - Thiam, Cheick A1 - Tipping, Jill A1 - Wevrett, Jill A1 - Lassmann, Michael T1 - On the use of solid 133Ba sources as surrogate for liquid 131I in SPECT/CT calibration: a European multi-centre evaluation JF - EJNMMI Physics N2 - Introduction Commissioning, calibration, and quality control procedures for nuclear medicine imaging systems are typically performed using hollow containers filled with radionuclide solutions. This leads to multiple sources of uncertainty, many of which can be overcome by using traceable, sealed, long-lived surrogate sources containing a radionuclide of comparable energies and emission probabilities. This study presents the results of a quantitative SPECT/CT imaging comparison exercise performed within the MRTDosimetry consortium to assess the feasibility of using 133Ba as a surrogate for 131I imaging. Materials and methods Two sets of four traceable 133Ba sources were produced at two National Metrology Institutes and encapsulated in 3D-printed cylinders (volume range 1.68–107.4 mL). Corresponding hollow cylinders to be filled with liquid 131I and a mounting baseplate for repeatable positioning within a Jaszczak phantom were also produced. A quantitative SPECT/CT imaging comparison exercise was conducted between seven members of the consortium (eight SPECT/CT systems from two major vendors) based on a standardised protocol. Each site had to perform three measurements with the two sets of 133Ba sources and liquid 131I. Results As anticipated, the 131I pseudo-image calibration factors (cps/MBq) were higher than those for 133Ba for all reconstructions and systems. A site-specific cross-calibration reduced the performance differences between both radionuclides with respect to a cross-calibration based on the ratio of emission probabilities from a median of 12–1.5%. The site-specific cross-calibration method also showed agreement between 133Ba and 131I for all cylinder volumes, which highlights the potential use of 133Ba sources to calculate recovery coefficients for partial volume correction. Conclusion This comparison exercise demonstrated that traceable solid 133Ba sources can be used as surrogate for liquid 131I imaging. The use of solid surrogate sources could solve the radiation protection problem inherent in the preparation of phantoms with 131I liquid activity solutions as well as reduce the measurement uncertainties in the activity. This is particularly relevant for stability measurements, which have to be carried out at regular intervals. KW - 133Ba KW - Barium-133 KW - 131I KW - radioiodine KW - solid surrogate source KW - quantitative SPECT/CT KW - comparison exercise KW - multi-centre KW - calibration Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-357740 VL - 10 ER - TY - JOUR A1 - Lambrecht, G. A1 - Feifel, R. A1 - Wagner-Röder, M. A1 - Strohmann, C. A1 - Zilch, H. A1 - Tacke, Reinhold A1 - Waelbroeck, M. A1 - Christophe, J. A1 - Boddeke, H. A1 - Mutschler, E. T1 - Affinity profiles of hexahydro-sila-difenidol analogues at muscarinic receptor subtypes N2 - In an attempt to assess the structural requirements of hexahydro-sila-difenidol for potency and selectivity, a series of analogues modified in the amino group and the phenyl ring were investigated for their affinity to muscarinic M1- (rabbit vas deferens), Mr (guinea-pig atria) and Mr (guinea-pig ileum) receptors. All compounds were competitive antagonists in the three tissues. Their affinities to the three muscarinic receptor subtypes differed by more than two orders of magnitude and the observed receptor selectivities were not associated with high affinity. The pyrrolidino and hexamethyleneimino analogues, compounds substituted in the phenylring with a methoxy group or a chlorine atom as weil as p-fluoro-hexahydro-difenidol displayed the same affinity profile as the parent compound, hexahydro-sila-difenidol: M1 = M3 > M2 • A different selectivity patternwas observed for p-fluoro-hexahydro-sila-difenidol: M3 > M1 > M2 • This compound exhibited its highest affinity for M3-receptors in guinea-pig ileum (pA 2 = 7.84), intermediate affinity for M1-receptors in rabbit vas deferens (pA 2 = 6.68) and lowest affinity for the Mrreceptors in guinea-pig atria (pA 2 = 6.01). This receptor selectivity profile of p-fluoro-hexahydro-sila-difenidol was confirmed in ganglia (M1), atria (M2 ) and ileum (M 3 ) of the rat. Furthermore, dose ratios obtained with either pirenzepine (Mt) or hexahydrosila- difenidol (M2 and M3) and the p-fluoro analogue used in combination suggested that the antagonism was additive, implying mutual competition with a single population of muscarinic receptor subtypes. These results indicate that p-fluoro-hexahydro-sila-difenidol represents a valuable tool for characterization of muscarinic receptor subtypes. KW - Anorganische Chemie KW - Muscarinic receptor subtypes KW - Muscarinic M3selective antagonists KW - Hexahydro-sila-difenidol analogues Y1 - 1989 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-63979 ER -