TY - JOUR A1 - Ramler, Jacqueline A1 - Lichtenberg, Crispin T1 - Molecular Bismuth Cations: Assessment of Soft Lewis Acidity JF - Chemistry – A European Journal N2 - Three‐coordinate cationic bismuth compounds [Bi(diaryl)(EPMe\(_{3}\))][SbF\(_{6}\)] have been isolated and fully characterized (diaryl=[(C\(_{6}\)H\(_{4}\))\(_{2}\)C\(_{2}\)H\(_{1}\)]\(^{2-}\), E=S, Se). They represent rare examples of molecular complexes with Bi⋅⋅⋅EPR\(_{3}\) interactions (R=monoanionic substituent). The \(^{31}\)P NMR chemical shift of EPMe3 has been found to be sensitive to the formation of LA⋅⋅⋅EPMe\(_{3}\) Lewis acid/base interactions (LA=Lewis acid). This corresponds to a modification of the Gutmann–Beckett method and reveals information about the hardness/softness of the Lewis acid under investigation. A series of organobismuth compounds, bismuth halides, and cationic bismuth species have been investigated with this approach and compared to traditional group 13 and cationic group 14 Lewis acids. Especially cationic bismuth species have been shown to be potent soft Lewis acids that may prefer Lewis pair formation with a soft (S/Se‐based) rather than a hard (O/N‐based) donor. Analytical techniques applied in this work include (heteronuclear) NMR spectroscopy, single‐crystal X‐ray diffraction analysis, and DFT calculations. KW - bismuth KW - bonding analysis KW - cationic species KW - HSAB principle KW - Lewis acids Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-225808 VL - 26 IS - 45 SP - 10250 EP - 10258 ER - TY - JOUR A1 - Ramler, Jacqueline A1 - Krummenacher, Ivo A1 - Lichtenberg, Crispin T1 - Well‐Defined, Molecular Bismuth Compounds: Catalysts in Photochemically Induced Radical Dehydrocoupling Reactions JF - Chemistry – A European Journal N2 - A series of diorgano(bismuth)chalcogenides, [Bi(di‐aryl)EPh], has been synthesised and fully characterised (E=S, Se, Te). These molecular bismuth complexes have been exploited in homogeneous photochemically‐induced radical catalysis, using the coupling of silanes with TEMPO as a model reaction (TEMPO=(tetramethyl‐piperidin‐1‐yl)‐oxyl). Their catalytic properties are complementary or superior to those of known catalysts for these coupling reactions. Catalytically competent intermediates of the reaction have been identified. Applied analytical techniques include NMR, UV/Vis, and EPR spectroscopy, mass spectrometry, single‐crystal X‐ray diffraction analysis, and (TD)‐DFT calculations. KW - bismuth KW - chalcogens KW - dehydrocoupling KW - photocatalysis KW - radical reactions Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-224577 VL - 26 IS - 64 SP - 14551 EP - 14555 ER -