TY - JOUR A1 - Vona, Barbara A1 - Maroofian, Reza A1 - Bellacchio, Emanuele A1 - Najafi, Maryam A1 - Thompson, Kyle A1 - Alahmad, Ahmad A1 - He, Langping A1 - Ahangari, Najmeh A1 - Rad, Abolfazl A1 - Shahrokhzadeh, Sima A1 - Bahena, Paulina A1 - Mittag, Falk A1 - Traub, Frank A1 - Movaffagh, Jebrail A1 - Amiri, Nafise A1 - Doosti, Mohammad A1 - Boostani, Reza A1 - Shirzadeh, Ebrahim A1 - Haaf, Thomas A1 - Diodato, Daria A1 - Schmidts, Miriam A1 - Taylor, Robert W. A1 - Karimiani, Ehsan Ghayoor T1 - Expanding the clinical phenotype of IARS2-related mitochondrial disease JF - BMC Medical Genetics N2 - Background: IARS2 encodes a mitochondrial isoleucyl-tRNA synthetase, a highly conserved nuclear-encoded enzyme required for the charging of tRNAs with their cognate amino acid for translation. Recently, pathogenic IARS2 variants have been identified in a number of patients presenting broad clinical phenotypes with autosomal recessive inheritance. These phenotypes range from Leigh and West syndrome to a new syndrome abbreviated CAGSSS that is characterised by cataracts, growth hormone deficiency, sensory neuropathy, sensorineural hearing loss, and skeletal dysplasia, as well as cataract with no additional anomalies. Methods: Genomic DNA from Iranian probands from two families with consanguineous parental background and overlapping CAGSSS features were subjected to exome sequencing and bioinformatics analysis. Results: Exome sequencing and data analysis revealed a novel homozygous missense variant (c.2625C > T, p.Pro909Ser, NM_018060.3) within a 14.3 Mb run of homozygosity in proband 1 and a novel homozygous missense variant (c.2282A > G, p.His761Arg) residing in an ~ 8 Mb region of homozygosity in a proband of the second family. Patient-derived fibroblasts from proband 1 showed normal respiratory chain enzyme activity, as well as unchanged oxidative phosphorylation protein subunits and IARS2 levels. Homology modelling of the known and novel amino acid residue substitutions in IARS2 provided insight into the possible consequence of these variants on function and structure of the protein. Conclusions: This study further expands the phenotypic spectrum of IARS2 pathogenic variants to include two patients (patients 2 and 3) with cataract and skeletal dysplasia and no other features of CAGSSS to the possible presentation of the defects in IARS2. Additionally, this study suggests that adult patients with CAGSSS may manifest central adrenal insufficiency and type II esophageal achalasia and proposes that a variable sensorineural hearing loss onset, proportionate short stature, polyneuropathy, and mild dysmorphic features are possible, as seen in patient 1. Our findings support that even though biallelic IARS2 pathogenic variants can result in a distinctive, clinically recognisable phenotype in humans, it can also show a wide range of clinical presentation from severe pediatric neurological disorders of Leigh and West syndrome to both non-syndromic cataract and cataract accompanied by skeletal dysplasia. KW - adrenal insufficiency KW - CAGSSS KW - cataracts KW - growth hormone deficiency KW - IARS2 KW - sensory neuropathy KW - sensorineural hearing loss KW - type II esophageal achalasia KW - skeletal dysplasia Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-176620 VL - 19 IS - 196 ER -