TY - JOUR A1 - Ma, Eric Yue A1 - Calvo, M. Reyes A1 - Wang, Jing A1 - Lian, Biao A1 - Mühlbauer, Mathias A1 - Brüne, Christoph A1 - Cui, Yong-Tao A1 - Lai, Keji A1 - Kundhikanjana, Worasom A1 - Yang, Yongliang A1 - Baenninger, Matthias A1 - König, Markus A1 - Ames, Christopher A1 - Buhmann, Hartmut A1 - Leubner, Philipp A1 - Molenkamp, Laurens W. A1 - Zhang, Shou-Cheng A1 - Goldhaber-Gordon, David A1 - Kelly, Michael A. A1 - Shen, Zhi-Xun T1 - Unexpected edge conduction in mercury telluride quantum wells under broken time-reversal symmetry JF - Nature Communications N2 - The realization of quantum spin Hall effect in HgTe quantum wells is considered a milestone in the discovery of topological insulators. Quantum spin Hall states are predicted to allow current flow at the edges of an insulating bulk, as demonstrated in various experiments. A key prediction yet to be experimentally verified is the breakdown of the edge conduction under broken time-reversal symmetry. Here we first establish a systematic framework for the magnetic field dependence of electrostatically gated quantum spin Hall devices. We then study edge conduction of an inverted quantum well device under broken time-reversal symmetry using microwave impedance microscopy, and compare our findings to a noninverted device. At zero magnetic field, only the inverted device shows clear edge conduction in its local conductivity profile, consistent with theory. Surprisingly, the edge conduction persists up to 9 T with little change. This indicates physics beyond simple quantum spin Hall model, including material-specific properties and possibly many-body effects. KW - topological insulators KW - surface states KW - HgTe KW - Hg1-xCdxTe KW - vacancies Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-143185 VL - 6 IS - 7252 ER - TY - JOUR A1 - Deane, Katrina E. A1 - Brunk, Michael G. K. A1 - Curran, Andrew W. A1 - Zempeltzi, Marina M. A1 - Ma, Jing A1 - Lin, Xiao A1 - Abela, Francesca A1 - Aksit, Sümeyra A1 - Deliano, Matthias A1 - Ohl, Frank W. A1 - Happel, Max F. K. T1 - Ketamine anaesthesia induces gain enhancement via recurrent excitation in granular input layers of the auditory cortex JF - The Journal of Physiology N2 - Ketamine is commonly used as an anaesthetic agent and has more recently gained attention as an antidepressant. It has been linked to increased stimulus‐locked excitability, inhibition of interneurons and modulation of intrinsic neuronal oscillations. However, the functional network mechanisms are still elusive. A better understanding of these anaesthetic network effects may improve upon previous interpretations of seminal studies conducted under anaesthesia and have widespread relevance for neuroscience with awake and anaesthetized subjects as well as in medicine. Here, we investigated the effects of anaesthetic doses of ketamine (15 mg kg\(^{-1}\) h\(^{-1}\)i.p.) on the network activity after pure‐tone stimulation within the auditory cortex of male Mongolian gerbils (Meriones unguiculatus). We used laminar current source density (CSD) analysis and subsequent layer‐specific continuous wavelet analysis to investigate spatiotemporal response dynamics on cortical columnar processing in awake and ketamine‐anaesthetized animals. We found thalamocortical input processing within granular layers III/IV to be significantly increased under ketamine. This layer‐dependent gain enhancement under ketamine was not due to changes in cross‐trial phase coherence but was rather attributed to a broadband increase in magnitude reflecting an increase in recurrent excitation. A time–frequency analysis was indicative of a prolonged period of stimulus‐induced excitation possibly due to a reduced coupling of excitation and inhibition in granular input circuits – in line with the common hypothesis of cortical disinhibition via suppression of GABAergic interneurons. KW - auditory cortex KW - continuous wavelet analysis KW - current source density KW - ketamine anaesthesia KW - laminar recording KW - mesoscopic KW - microcircuitry KW - population dynamics Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-216123 VL - 598 IS - 13 SP - 2741 EP - 2755 ER -