TY - JOUR A1 - Panzer, Sabine A1 - Zhang, Chong A1 - Konte, Tilen A1 - Bräuer, Celine A1 - Diemar, Anne A1 - Yogendran, Parathy A1 - Yu-Strzelczyk, Jing A1 - Nagel, Georg A1 - Gao, Shiqiang A1 - Terpitz, Ulrich T1 - Modified Rhodopsins From Aureobasidium pullulans Excel With Very High Proton-Transport Rates JF - Frontiers in Molecular Biosciences N2 - Aureobasidium pullulans is a black fungus that can adapt to various stressful conditions like hypersaline, acidic, and alkaline environments. The genome of A. pullulans exhibits three genes coding for putative opsins ApOps1, ApOps2, and ApOps3. We heterologously expressed these genes in mammalian cells and Xenopus oocytes. Localization in the plasma membrane was greatly improved by introducing additional membrane trafficking signals at the N-terminus and the C-terminus. In patch-clamp and two-electrode-voltage clamp experiments, all three proteins showed proton pump activity with maximal activity in green light. Among them, ApOps2 exhibited the most pronounced proton pump activity with current amplitudes occasionally extending 10 pA/pF at 0 mV. Proton pump activity was further supported in the presence of extracellular weak organic acids. Furthermore, we used site-directed mutagenesis to reshape protein functions and thereby implemented light-gated proton channels. We discuss the difference to other well-known proton pumps and the potential of these rhodopsins for optogenetic applications. KW - black yeast KW - photoreceptor KW - microbial rhodopsins KW - optogenetics KW - proton channel KW - membrane trafficking KW - fungal rhodopsins KW - Aureobasidium Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-249248 SN - 2296-889X VL - 8 ER - TY - JOUR A1 - Beck, Sebastian A1 - Yu-Strzelczyk, Jing A1 - Pauls, Dennis A1 - Constantin, Oana M. A1 - Gee, Christine E. A1 - Ehmann, Nadine A1 - Kittel, Robert J. A1 - Nagel, Georg A1 - Gao, Shiqiang T1 - Synthetic light-activated ion channels for optogenetic activation and inhibition JF - Frontiers in Neuroscience N2 - Optogenetic manipulation of cells or living organisms became widely used in neuroscience following the introduction of the light-gated ion channel channelrhodopsin-2 (ChR2). ChR2 is a non-selective cation channel, ideally suited to depolarize and evoke action potentials in neurons. However, its calcium (Ca2\(^{2+}\)) permeability and single channel conductance are low and for some applications longer-lasting increases in intracellular Ca\(^{2+}\) might be desirable. Moreover, there is need for an efficient light-gated potassium (K\(^{+}\)) channel that can rapidly inhibit spiking in targeted neurons. Considering the importance of Ca\(^{2+}\) and K\(^{+}\) in cell physiology, light-activated Ca\(^{2+}\)-permeant and K\(^{+}\)-specific channels would be welcome additions to the optogenetic toolbox. Here we describe the engineering of novel light-gated Ca\(^{2+}\)-permeant and K\(^{+}\)-specific channels by fusing a bacterial photoactivated adenylyl cyclase to cyclic nucleotide-gated channels with high permeability for Ca\(^{2+}\) or for K\(^{+}\), respectively. Optimized fusion constructs showed strong light-gated conductance in Xenopus laevis oocytes and in rat hippocampal neurons. These constructs could also be used to control the motility of Drosophila melanogaster larvae, when expressed in motoneurons. Illumination led to body contraction when motoneurons expressed the light-sensitive Ca\(^{2+}\)-permeant channel, and to body extension when expressing the light-sensitive K\(^{+}\) channel, both effectively and reversibly paralyzing the larvae. Further optimization of these constructs will be required for application in adult flies since both constructs led to eclosion failure when expressed in motoneurons. KW - optogenetics KW - calcium KW - potassium KW - bPAC KW - CNG channel KW - cAMP KW - Drosophila melanogaster motoneuron KW - rat hippocampal neurons Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-177520 VL - 12 IS - 643 ER - TY - THES A1 - Yu-Strzelczyk, Jing T1 - Generation and Characterization of novel proteins for light-activated hyperpolarization of cell membranes T1 - Generierung und Charakterisierung neuartiger Proteine für Licht-aktivierte Hyperpolarisation von Zellmembranen N2 - The light-gated cation channel Channelrhodopsin-2 was discovered and characterized in 2003. Already in 2005/2006 five independent groups demonstrated that heterologous expression of Channelrhodopsin-2 is a highly useful and simply applicable method for depolarizing and thereby activating nerve cells. The application of Channelrhodopsin-2 revolutionized neuroscience research and the method was then called optogenetics. In recent years more and more light-sensitive proteins were successfully introduced as “optogenetic tools”, not only in neuroscience. Optogenetic tools for neuronal excitation are well developed with many different cation-conducting wildtype and mutated channelrhodopsins, whereas for inhibition of neurons in the beginning (2007) only hyperpolarizing ion pumps were available. The later discovered light-activated anion channels (anion channelrhodopsins) can be useful hyperpolarizers, but only at low cytoplasmic anion concentration. For this thesis, I optimized CsR, a proton-pumping rhodopsin from Coccomyxa subellipsoidea, which naturally shows a robust expression in Xenopus laevis oocytes and plant leaves. I improved the expression and therefore the photocurrent of CsR about two-fold by N-terminal modification to the improved version CsR2.0, without altering the proton pump function and the action spectrum. A light pulse hyperpolarised the mesophyll cells of CsR2.0-expressing transgenic tobacco plants (N. tabacum) by up to 20 mV from the resting membrane potential of -150 to -200 mV. The robust heterologous expression makes CsR2.0 a promising optogenetic tool for hyperpolarization in other organisms as well. A single R83H point-mutation converted CsR2.0 into a light-activated (passive) proton channel with a reversal potential close to the Nernst potential for intra-/extra-cellular H+ concentration. This light-gated proton channel is expected to become a further useful optogenetic tool, e.g. for analysis of pH-regulation in cells or the intercellular space. Ion pumps as optogenetic tools require high expression levels and high light intensity for efficient pump currents, whereas long-term illumination may cause unwanted heating effects. Although anion channelrhodopsins are effective hyperpolarizing tools in some cases, their effect on neuronal activity is dependent on the cytoplasmic chloride concentration which can vary among neurons. In nerve cells, increased conductance for potassium terminates the action potential and K+ conductance underlies the resting membrane potential in excitable cells. Therefore, several groups attempted to synthesize artificial light-gated potassium channels but 2 all of these published innovations showed serious drawbacks, ranging from poor expression over lacking reversibility to poor temporal precision. A highly potassium selective light-sensitive silencer of action potentials is needed. To achieve this, I engineered a light-activated potassium channel by the genetic fusion of a photoactivated adenylyl cyclase, bPAC, and a cAMP-gated potassium channel, SthK. Illumination activates bPAC to produce cAMP and the elevated cAMP level opens SthK. The slow diffusion and degradation of cAMP makes this construct a very light-sensitive, long-lasting inhibitor. I have successfully developed four variants with EC50 to cAMP ranging from 7 over 10, 21, to 29 μM. Together with the original fusion construct (EC50 to cAMP is 3 μm), there are five different light- (or cAMP-) sensitive potassium channels for researchersto choose, depending on their cell type and light intensity needs. N2 - Der lichtgesteuerte Kationenkanal Channelrhodopsin-2 wurde 2003 entdeckt und charakterisiert. Bereits 2005/2006 zeigten fünf unabhängige Gruppen, dass die heterologe Expression von Channelrhodopsin-2 eine sehr nützliche und einfach anwendbare Methode zur Depolarisation und damit Aktivierung von Nervenzellen ist. Die Anwendung von Channelrhodopsin-2 revolutionierte die neurowissenschaftliche Forschung und die Methode wurde dann Optogenetik genannt. In den letzten Jahren wurden immer mehr lichtempfindliche Proteine als „optogenetische Werkzeuge“ eingeführt, und nicht nur in den Neurowissenschaften erfolgreich angewandt. Optogenetische Werkzeuge zur neuronalen Anregung sind mit vielen verschiedenen Kationen-leitenden Wildtyp- und mutierten Channelrhodopsinen gut entwickelt, während für die Hemmung von Neuronen zu Beginn (2007) nur hyperpolarisierende Ionenpumpen zur Verfügung standen. Die später entdeckten lichtaktivierten Anionenkanäle (Anionenkanalrhodopsine) können nützliche Hyperpolarisatoren sein, jedoch nur bei niedriger zytoplasmatischer Anionenkonzentration. Für diese Arbeit habe ich CsR optimiert, ein Protonen pumpendes Rhodopsin aus Coccomyxa subellipsoidea, das von Natur aus eine robuste Expression in Oozyten von Xenopus laevis und in Pflanzenblättern zeigt. Ich habe die Expression und damit den Photostrom von CsR etwa um das Zweifache durch N-terminale Modifikation verbessert, ohne die Protonenpump-Funktion und das Aktionsspektrum bei der verbesserten Version von CsR2.0 zu verändern. Ein Lichtpuls hyperpolarisierte die Mesophyllzellen von CsR2.0-exprimierenden transgenen Tabakpflanzen (N. tabacum) um bis zu 20 mV gegenüber dem Ruhe-Membranpotential von -150 bis -200 mV. Die robuste heterologe Expression macht CsR2.0 zu einem vielversprechenden optogenetischen Werkzeug für die Hyperpolarisation auch in anderen Organismen. Eine einzelne R83H-Punktmutation wandelte CsR2.0 um in einen Licht-aktivierten (passiven) Protonenkanal mit einem Umkehrpotential nahe dem Nernst-Potential für intra-/extrazelluläre H+-Konzentration. Es wird erwartet, dass dieser Licht-gesteuerte Protonenkanal ein weiteres nützliches optogenetisches Werkzeug wird, z. zur Analyse der pH-Regulation in Zellen oder dem Interzellularraum. Ionenpumpen als optogenetische Werkzeuge erfordern hohe Expressionsraten und eine hohe Lichtintensität für effiziente Pumpströme, wobei eine Langzeitbeleuchtung unerwünschte Erwärmungseffekte verursachen kann. Obwohl Anionen-Channelrhodopsine in einigen Fällen wirksame hyperpolarisierende Werkzeuge sind, hängt ihre Wirkung auf die neuronale Aktivität von der zytoplasmatischen Chloridkonzentration ab, die zwischen den Neuronen variieren kann. In Nervenzellen beendet eine erhöhte Leitfähigkeit für Kalium das Aktionspotential und die K+-Leitfähigkeit liegt dem Ruhe-Membranpotential in erregbaren Zellen zugrunde. Daher versuchten mehrere Gruppen, künstliche lichtgesteuerte Kaliumkanäle zu synthetisieren, aber alle diese veröffentlichten Innovationen zeigten schwerwiegende Nachteile, die von schlechter Expression über fehlende Reversibilität bis hin zu geringer zeitlicher Präzision reichten. Ein hoch Kalium-selektiver Licht-empfindlicher Inhibitor der Aktionspotentiale ist von hohem Wert für die Neurowissenschaft. Um dies zu erreichen, habe ich einen Licht-aktivierten Kaliumkanal durch genetische Fusion einer photoaktivierten Adenylylcyclase, bPAC, und eines cAMP-gesteuerten Kaliumkanals, SthK, konstruiert. Beleuchtung aktiviert bPAC zur Produktion von cAMP und der erhöhte cAMP-Spiegel öffnet SthK. Die langsame Diffusion und Degradation von cAMP macht dieses Konstrukt zu einem sehr Licht-empfindlichen, lang anhaltenden Inhibitor. Ich habe darüber hinaus erfolgreich vier Varianten mit EC50 für cAMP im Bereich von 7 über 10, 21 bis 29 µM entwickelt. Zusammen mit dem ursprünglichen Fusionskonstrukt (EC50 zu cAMP beträgt 3 μM) gibt es damit nun fünf verschiedene lichtempfindliche Kaliumkanäle, die je nach Zelltyp und Lichtintensitätsbedarf für optogenetische Experimente ausgewählt werden können. KW - neuronal silencing KW - optogenetics KW - hyperpolarization KW - Proteine Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-266752 ER -