TY - JOUR A1 - Brumberg, Joachim A1 - Kuzkina, Anastasia A1 - Lapa, Constantin A1 - Mammadova, Sona A1 - Buck, Andreas A1 - Volkmann, Jens A1 - Sommer, Claudia A1 - Isaias, Ioannis U. A1 - Doppler, Kathrin T1 - Dermal and cardiac autonomic fiber involvement in Parkinson's disease and multiple system atrophy JF - Neurobiology of Disease N2 - Pathological aggregates of alpha-synuclein in peripheral dermal nerve fibers can be detected in patients with idiopathic Parkinson's disease and multiple system atrophy. This study combines skin biopsy staining for p-alpha-synuclein depositions and radionuclide imaging of the heart with [\(^{123}\)I]-metaiodobenzylguanidine to explore peripheral denervation in both diseases. To this purpose, 42 patients with a clinical diagnosis of Parkinson's disease or multiple system atrophy were enrolled. All patients underwent a standardized clinical workup including neurological evaluation, neurography, and blood samples. Skin biopsies were obtained from the distal and proximal leg, back, and neck for immunofluorescence double labeling with anti-p-alpha-synuclein and anti-PGP9.5. All patients underwent myocardial [\(^{123}\)I]-metaiodobenzylguanidine scintigraphy. Dermal p-alpha-synuclein was observed in 47.6% of Parkinson's disease patients and was mainly found in autonomic structures. 81.0% of multiple system atrophy patients had deposits with most of cases in somatosensory fibers. The [\(^{123}\)I]-metaiodobenzylguanidine heart-to-mediastinum ratio was lower in Parkinson's disease than in multiple system atrophy patients (1.94 +/- 0.63 vs. 2.91 +/- 0.96; p < 0.0001). Irrespective of the diagnosis, uptake was lower in patients with than without p-alpha-synuclein in autonomic structures (1.42 +/- 0.51 vs. 2.74 +/- 0.83; p < 0.0001). Rare cases of Parkinson's disease with p-alpha-synuclein in somatosensory fibers and multiple system atrophy patients with deposits in autonomic structures or both fiber types presented with clinically overlapping features. In conclusion, this study suggests that alpha-synuclein contributes to peripheral neurodegeneration and mediates the impairment of cardiac sympathetic neurons in patients with synucleinopathies. Furthermore, it indicates that Parkinson's disease and multiple system atrophy share pathophysiologic mechanisms of peripheral nervous system dysfunction with a clinical overlap. KW - peripheral nervous system KW - Parkinson's disease KW - skin biopsy KW - MIBG scintigraphy KW - multiple system atrophy Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-260061 VL - 153 ER - TY - JOUR A1 - Linz, Christian A1 - Brands, Roman C. A1 - Kertels, Olivia A1 - Dierks, Alexander A1 - Brumberg, Joachim A1 - Gerhard-Hartmann, Elena A1 - Hartmann, Stefan A1 - Schirbel, Andreas A1 - Serfling, Sebastian A1 - Zhi, Yingjun A1 - Buck, Andreas K. A1 - Kübler, Alexander A1 - Hohm, Julian A1 - Lapa, Constantin A1 - Kircher, Malte T1 - Targeting fibroblast activation protein in newly diagnosed squamous cell carcinoma of the oral cavity – initial experience and comparison to [\(^{18}\)F]FDG PET/CT and MRI JF - European Journal of Nuclear Medicine and Molecular Imaging N2 - Purpose While [\(^{18}\)F]-fluorodeoxyglucose ([\(^{18}\)F]FDG) is the standard for positron emission tomography/computed tomography (PET/CT) imaging of oral squamous cell carcinoma (OSCC), diagnostic specificity is hampered by uptake in inflammatory cells such as neutrophils or macrophages. Recently, molecular imaging probes targeting fibroblast activation protein α (FAP), which is overexpressed in a variety of cancer-associated fibroblasts, have become available and might constitute a feasible alternative to FDG PET/CT. Methods Ten consecutive, treatment-naïve patients (8 males, 2 females; mean age, 62 ± 9 years) with biopsy-proven OSCC underwent both whole-body [\(^{18}\)F]FDG and [\(^{68}\)Ga]FAPI-04 (FAP-directed) PET/CT for primary staging prior to tumor resection and cervical lymph node dissection. Detection of the primary tumor, as well as the presence and number of lymph node and distant metastases was analysed. Intensity of tracer accumulation was assessed by means of maximum (SUV\(_{max}\)) and peak (SUV\(_{peak}\) standardized uptake values. Histological work-up including immunohistochemical staining for FAP served as standard of reference. Results [\(^{18}\)F]FDG and FAP-directed PET/CT detected all primary tumors with a SUVmax of 25.5 ± 13.2 (FDG) and 20.5 ± 6.4 (FAP-directed) and a SUVpeak of 16.1 ± 10.3 ([\(^{18}\)F]FDG) and 13.8 ± 3.9 (FAP-directed), respectively. Regarding cervical lymph node metastases, FAP-directed PET/CT demonstrated comparable sensitivity (81.3% vs. 87.5%; P = 0.32) and specificity (93.3% vs. 81.3%; P = 0.16) to [\(^{18}\)F]FDG PET/CT. FAP expression on the cell surface of cancer-associated fibroblasts in both primary lesions as well as lymph nodes metastases was confirmed in all samples. Conclusion FAP-directed PET/CT in OSCC seems feasible. Future research to investigate its potential to improve patient staging is highly warranted. KW - molecular imaging KW - fibroblast activation protein KW - head and neck cancer KW - PET Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-307246 SN - 1619-7070 SN - 1619-7089 VL - 48 IS - 12 ER -