TY - JOUR A1 - Diestel, Uschi A1 - Resch, Marcus A1 - Meinhardt, Kathrin A1 - Weiler, Sigrid A1 - Hellmann, Tina V. A1 - Mueller, Thomas D. A1 - Nickel, Joachim A1 - Eichler, Jutta A1 - Muller, Yves A. T1 - Identification of a Novel TGF-beta-Binding Site in the Zona Pellucida C-terminal (ZP-C) Domain of TGF-\(\beta\)-Receptor-3 (TGFR-3) JF - PLoS ONE N2 - The zona pellucida (ZP) domain is present in extracellular proteins such as the zona pellucida proteins and tectorins and participates in the formation of polymeric protein networks. However, the ZP domain also occurs in the cytokine signaling co-receptor transforming growth factor beta (TGF-\(\beta\)) receptor type 3 (TGFR-3, also known as betaglycan) where it contributes to cytokine ligand recognition. Currently it is unclear how the ZP domain architecture enables this dual functionality. Here, we identify a novel major TGF-beta-binding site in the FG loop of the C-terminal subdomain of the murine TGFR-3 ZP domain (ZP-C) using protein crystallography, limited proteolysis experiments, surface plasmon resonance measurements and synthetic peptides. In the murine 2.7 angstrom crystal structure that we are presenting here, the FG-loop is disordered, however, well-ordered in a recently reported homologous rat ZP-C structure. Surprisingly, the adjacent external hydrophobic patch (EHP) segment is registered differently in the rat and murine structures suggesting that this segment only loosely associates with the remaining ZP-C fold. Such a flexible and temporarily-modulated association of the EHP segment with the ZP domain has been proposed to control the polymerization of ZP domain-containing proteins. Our findings suggest that this flexibility also extends to the ZP domain of TGFR-3 and might facilitate co-receptor ligand interaction and presentation via the adjacent FG-loop. This hints that a similar C-terminal region of the ZP domain architecture possibly regulates both the polymerization of extracellular matrix proteins and cytokine ligand recognition of TGFR-3. KW - coreceptor KW - receptor type III KW - growth factor beta KW - ligand binding KW - betaglycan KW - proteins KW - mutagenesis KW - polymerization KW - glycoprotein KW - superfamily Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-130904 VL - 8 IS - 6 ER - TY - JOUR A1 - Lagler, Charlotte A1 - El-Mesery, Mohamed A1 - Kübler, Alexander Christian A1 - Müller-Richter, Urs Dietmar Achim A1 - Stühmer, Thorsten A1 - Nickel, Joachim A1 - Müller, Thomas Dieter A1 - Wajant, Harald A1 - Seher, Axel T1 - The anti-myeloma activity of bone morphogenetic protein 2 predominantly relies on the induction of growth arrest and is apoptosis-independent JF - PLoS ONE N2 - Multiple myeloma (MM), a malignancy of the bone marrow, is characterized by a pathological increase in antibody-producing plasma cells and an increase in immunoglobulins (plasmacytosis). In recent years, bone morphogenetic proteins (BMPs) have been reported to be activators of apoptotic cell death in neoplastic B cells in MM. Here, we use bone morphogenetic protein 2 (BMP2) to show that the "apoptotic" effect of BMPs on human neoplastic B cells is dominated by anti-proliferative activities and cell cycle arrest and is apoptosis-independent. The anti-proliferative effect of BMP2 was analysed in the human cell lines KMS12-BM and L363 using WST-1 and a Coulter counter and was confirmed using CytoTox assays with established inhibitors of programmed cell death (zVAD-fmk and necrostatin-1). Furthermore, apoptotic activity was compared in both cell lines employing western blot analysis for caspase 3 and 8 in cells treated with BMP2 and FasL. Additionally, expression profiles of marker genes of different cell death pathways were analysed in both cell lines after stimulation with BMP2 for 48h using an RT-PCR-based array. In our experiments we observed that there was rather no reduction in absolute cell number, but cells stopped proliferating following treatment with BMP2 instead. The time frame (48–72 h) after BMP2 treatment at which a reduction in cell number is detectable is too long to indicate a directly BMP2-triggered apoptosis. Moreover, in comparison to robust apoptosis induced by the approved apoptotic factor FasL, BMP2 only marginally induced cell death. Consistently, neither the known inhibitor of apoptotic cell death zVAD-fmk nor the necroptosis inhibitor necrostatin-1 was able to rescue myeloma cell growth in the presence of BMP2. KW - apoptosis KW - gene expression KW - necrotic cell death KW - multiple myeloma KW - cell metabolism KW - cell cycle and cell division KW - B cells Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-158993 VL - 12 IS - 10 ER - TY - JOUR A1 - Nickel, Joachim A1 - Mueller, Thomas D. T1 - Specification of BMP signaling JF - Cells N2 - Bone Morphogenetic Proteins (BMPs) together with the Growth and Differentiation Factors (GDFs) form the largest subgroup of the Transforming Growth Factor (TGF)β family and represent secreted growth factors, which play an essential role in many aspects of cell communication in higher organisms. As morphogens they exert crucial functions during embryonal development, but are also involved in tissue homeostasis and regeneration in the adult organism. Their involvement in maintenance and repair processes of various tissues and organs made these growth factors highly interesting targets for novel pharmaceutical applications in regenerative medicine. A hallmark of the TGFβ protein family is that all of the more than 30 growth factors identified to date signal by binding and hetero-oligomerization of a very limited set of transmembrane serine-threonine kinase receptors, which can be classified into two subgroups termed type I and type II. Only seven type I and five type II receptors exist for all 30plus TGFβ members suggesting a pronounced ligand-receptor promiscuity. Indeed, many TGFβ ligands can bind the same type I or type II receptor and a particular receptor of either subtype can usually interact with and bind various TGFβ ligands. The possible consequence of this ligand-receptor promiscuity is further aggravated by the finding that canonical TGFβ signaling of all family members seemingly results in the activation of just two distinct signaling pathways, that is either SMAD2/3 or SMAD1/5/8 activation. While this would implicate that different ligands can assemble seemingly identical receptor complexes that activate just either one of two distinct pathways, in vitro and in vivo analyses show that the different TGFβ members exert quite distinct biological functions with high specificity. This discrepancy indicates that our current view of TGFβ signaling initiation just by hetero-oligomerization of two receptor subtypes and transduction via two main pathways in an on-off switch manner is too simplified. Hence, the signals generated by the various TGFβ members are either quantitatively interpreted using the subtle differences in their receptor-binding properties leading to ligand-specific modulation of the downstream signaling cascade or additional components participating in the signaling activation complex allow diversification of the encoded signal in a ligand-dependent manner at all cellular levels. In this review we focus on signal specification of TGFβ members, particularly of BMPs and GDFs addressing the role of binding affinities, specificities, and kinetics of individual ligand-receptor interactions for the assembly of specific receptor complexes with potentially distinct signaling properties. KW - TGFβ/BMP signaling KW - ligand-receptor promiscuity KW - signal specification Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-193869 SN - 2073-4409 VL - 8 IS - 12 ER - TY - JOUR A1 - Xu, Jietao A1 - Fahmy-Garcia, Shorouk A1 - Wesdorp, Marinus A. A1 - Kops, Nicole A1 - Forte, Lucia A1 - De Luca, Claudio A1 - Misciagna, Massimiliano Maraglino A1 - Dolcini, Laura A1 - Filardo, Giuseppe A1 - Labberté, Margot A1 - Vancíková, Karin A1 - Kok, Joeri A1 - van Rietbergen, Bert A1 - Nickel, Joachim A1 - Farrell, Eric A1 - Brama, Pieter A. J. A1 - van Osch, Gerjo J. V. M. T1 - Effectiveness of BMP-2 and PDGF-BB adsorption onto a collagen/collagen-magnesium-hydroxyapatite scaffold in weight-bearing and non-weight-bearing osteochondral defect bone repair: in vitro, ex vivo and in vivo evaluation JF - Journal of Functional Biomaterials N2 - Despite promising clinical results in osteochondral defect repair, a recently developed bi-layered collagen/collagen-magnesium-hydroxyapatite scaffold has demonstrated less optimal subchondral bone repair. This study aimed to improve the bone repair potential of this scaffold by adsorbing bone morphogenetic protein 2 (BMP-2) and/or platelet-derived growth factor-BB (PDGF-BB) onto said scaffold. The in vitro release kinetics of BMP-2/PDGF-BB demonstrated that PDGF-BB was burst released from the collagen-only layer, whereas BMP-2 was largely retained in both layers. Cell ingrowth was enhanced by BMP-2/PDFG-BB in a bovine osteochondral defect ex vivo model. In an in vivo semi-orthotopic athymic mouse model, adding BMP-2 or PDGF-BB increased tissue repair after four weeks. After eight weeks, most defects were filled with bone tissue. To further investigate the promising effect of BMP-2, a caprine bilateral stifle osteochondral defect model was used where defects were created in weight-bearing femoral condyle and non-weight-bearing trochlear groove locations. After six months, the adsorption of BMP-2 resulted in significantly less bone repair compared with scaffold-only in the femoral condyle defects and a trend to more bone repair in the trochlear groove. Overall, the adsorption of BMP-2 onto a Col/Col-Mg-HAp scaffold reduced bone formation in weight-bearing osteochondral defects, but not in non-weight-bearing osteochondral defects. KW - tissue engineering KW - regenerative medicine KW - osteochondral lesion KW - biocompatible materials KW - bone morphogenetic proteins KW - platelet-derived growth factor KW - animal model KW - weight-bearing Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-304019 SN - 2079-4983 VL - 14 IS - 2 ER - TY - JOUR A1 - Belka, Janina A1 - Nickel, Joachim A1 - Kurth, Dirk G. T1 - Growth on metallo-supramolecular coordination polyelectrolyte (MEPE) stimulates osteogenic differentiation of human osteosarcoma cells (MG63) and human bone marrow derived mesenchymal stem cells JF - Polymers N2 - Background: Culturing of cells is typically performed on standard tissue culture plates generating growth conditions, which in general do not reflect the native three-dimensional cellular environment. Recent investigations provide insights in parameters, which strongly affect the general cellular behavior triggering essential processes such as cell differentiation. The physical properties of the used material, such as stiffness, roughness, or topology, as well as the chemical composition of the cell-surface interface are shown to play a key role in the initiation of particular cellular responses. Methods: We extended our previous research, which identified thin films of metallo-supramolecular coordination polyelectrolytes (MEPEs) as substrate to trigger the differentiation of muscular precursor cells. Results: Here, we show that the same MEPEs similarly stimulate the osteogenic differentiation of pre-osteoblasts. Remarkably, MEPE modified surfaces also trigger the differentiation of primary bone derived mesenchymal stem cells (BMSCs) towards the osteogenic lineage. Conclusion: This result leads to the conclusion that these surfaces individually support the specification of cell differentiation toward lineages that correspond to the natural commitment of the particular cell types. We, therefore, propose that Fe-MEPEs may be used as scaffold for the treatment of defects at least in muscular or bone tissue. KW - cell differentiation KW - metallo-supramolecular polymer KW - interface KW - iron metabolism Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-197264 SN - 2073-4360 VL - 11 IS - 7 ER - TY - JOUR A1 - Mumcuoglu, Didem A1 - Siverino, Claudia A1 - Tabisz, Barbara A1 - Kluijtmans, Bas A1 - Nickel, Joachim T1 - How to use BMP-2 for clinical applications? A review on pros and cons of existing delivery strategies JF - Journal of Translational Science N2 - No abstract available. KW - BMP-2 KW - clinical applications Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-158678 VL - 3 IS - 5 ER - TY - JOUR A1 - Siverino, Claudia A1 - Fahmy-Garcia, Shorouk A1 - Mumcuoglu, Didem A1 - Oberwinkler, Heike A1 - Muehlemann, Markus A1 - Mueller, Thomas A1 - Farrell, Eric A1 - van Osch, Gerjo J. V. M. A1 - Nickel, Joachim T1 - Site-directed immobilization of an engineered bone morphogenetic protein 2 (BMP2) variant to collagen-based microspheres induces bone formation in vivo JF - International Journal of Molecular Sciences N2 - For the treatment of large bone defects, the commonly used technique of autologous bone grafting presents several drawbacks and limitations. With the discovery of the bone-inducing capabilities of bone morphogenetic protein 2 (BMP2), several delivery techniques were developed and translated to clinical applications. Implantation of scaffolds containing adsorbed BMP2 showed promising results. However, off-label use of this protein-scaffold combination caused severe complications due to an uncontrolled release of the growth factor, which has to be applied in supraphysiological doses in order to induce bone formation. Here, we propose an alternative strategy that focuses on the covalent immobilization of an engineered BMP2 variant to biocompatible scaffolds. The new BMP2 variant harbors an artificial amino acid with a specific functional group, allowing a site-directed covalent scaffold functionalization. The introduced artificial amino acid does not alter BMP2′s bioactivity in vitro. When applied in vivo, the covalently coupled BMP2 variant induces the formation of bone tissue characterized by a structurally different morphology compared to that induced by the same scaffold containing ab-/adsorbed wild-type BMP2. Our results clearly show that this innovative technique comprises translational potential for the development of novel osteoinductive materials, improving safety for patients and reducing costs. KW - bone morphogenetic protein 2 (BMP2) KW - bone regeneration KW - covalent coupling KW - subcutaneous animal model Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-284572 SN - 1422-0067 VL - 23 IS - 7 ER - TY - JOUR A1 - Siverino, Claudia A1 - Fahmy-Garcia, Shorouk A1 - Niklaus, Viktoria A1 - Kops, Nicole A1 - Dolcini, Laura A1 - Misciagna, Massimiliano Maraglino A1 - Ridwan, Yanto A1 - Farrell, Eric A1 - van Osch, Gerjo J. V. M. A1 - Nickel, Joachim T1 - Addition of heparin binding sites strongly increases the bone forming capabilities of BMP9 in vivo JF - Bioactive Materials N2 - Highlights • Despite not being crucial for bone development BMP9 can induce bone growth in vivo. • BMP9 induced bone formation is strongly enhanced by introduced heparin binding sites. • BMP9s bone forming capabilities are triggered by extracellular matrix binding. • Heparin binding BMP9 (BMP9 HB) can improve the current therapies in treating bone fractures. Abstract Bone Morphogenetic proteins (BMPs) like BMP2 and BMP7 have shown great potential in the treatment of severe bone defects. In recent in vitro studies, BMP9 revealed the highest osteogenic potential compared to other BMPs, possibly due to its unique signaling pathways that differs from other osteogenic BMPs. However, in vivo the bone forming capacity of BMP9-adsorbed scaffolds is not superior to BMP2 or BMP7. In silico analysis of the BMP9 protein sequence revealed that BMP9, in contrast to other osteogenic BMPs such as BMP2, completely lacks so-called heparin binding motifs that enable extracellular matrix (ECM) interactions which in general might be essential for the BMPs' osteogenic function. Therefore, we genetically engineered a new BMP9 variant by adding BMP2-derived heparin binding motifs to the N-terminal segment of BMP9′s mature part. The resulting protein (BMP9 HB) showed higher heparin binding affinity than BMP2, similar osteogenic activity in vitro and comparable binding affinities to BMPR-II and ALK1 compared to BMP9. However, remarkable differences were observed when BMP9 HB was adsorbed to collagen scaffolds and implanted subcutaneously in the dorsum of rats, showing a consistent and significant increase in bone volume and density compared to BMP2 and BMP9. Even at 10-fold lower BMP9 HB doses bone tissue formation was observed. This innovative approach of significantly enhancing the osteogenic properties of BMP9 simply by addition of ECM binding motifs, could constitute a valuable replacement to the commonly used BMPs. The possibility to use lower protein doses demonstrates BMP9 HB's high translational potential. KW - bone morphogenetic protein 9 (BMP9) KW - heparin binding sites KW - bone regeneration KW - subcutaneous animal model Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-350470 VL - 29 ER - TY - JOUR A1 - Weißenberger, Manuel A1 - Wagenbrenner, Mike A1 - Nickel, Joachim A1 - Ahlbrecht, Rasmus A1 - Blunk, Torsten A1 - Steinert, Andre F. A1 - Gilbert, Fabian T1 - Comparative in vitro treatment of mesenchymal stromal cells with GDF-5 and R57A induces chondrogenic differentiation while limiting chondrogenic hypertrophy JF - Journal of Experimental Orthopaedics N2 - Purpose Hypertrophic cartilage is an important characteristic of osteoarthritis and can often be found in patients suffering from osteoarthritis. Although the exact pathomechanism remains poorly understood, hypertrophic de-differentiation of chondrocytes also poses a major challenge in the cell-based repair of hyaline cartilage using mesenchymal stromal cells (MSCs). While different members of the transforming growth factor beta (TGF-β) family have been shown to promote chondrogenesis in MSCs, the transition into a hypertrophic phenotype remains a problem. To further examine this topic we compared the effects of the transcription growth and differentiation factor 5 (GDF-5) and the mutant R57A on in vitro chondrogenesis in MSCs. Methods Bone marrow-derived MSCs (BMSCs) were placed in pellet culture and in-cubated in chondrogenic differentiation medium containing R57A, GDF-5 and TGF-ß1 for 21 days. Chondrogenesis was examined histologically, immunohistochemically, through biochemical assays and by RT-qPCR regarding the expression of chondrogenic marker genes. Results Treatment of BMSCs with R57A led to a dose dependent induction of chondrogenesis in BMSCs. Biochemical assays also showed an elevated glycosaminoglycan (GAG) content and expression of chondrogenic marker genes in corresponding pellets. While treatment with R57A led to superior chondrogenic differentiation compared to treatment with the GDF-5 wild type and similar levels compared to incubation with TGF-ß1, levels of chondrogenic hypertrophy were lower after induction with R57A and the GDF-5 wild type. Conclusions R57A is a stronger inducer of chondrogenesis in BMSCs than the GDF-5 wild type while leading to lower levels of chondrogenic hypertrophy in comparison with TGF-ß1. KW - bone marrow KW - cartilage KW - chondrogenesis KW - chondrogenic hypertrophy KW - mesenchymal stromal cell KW - GDF-5 KW - R57A Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-357770 VL - 10 ER - TY - JOUR A1 - Suliman, Salwa A1 - Mustafa, Kamal A1 - Krueger, Anke A1 - Steinmüller-Nethl, Doris A1 - Finne-Wistrand, Anna A1 - Osdal, Tereza A1 - Hamza, Amani O. A1 - Sun, Yang A1 - Parajuli, Himalaya A1 - Waag, Thilo A1 - Nickel, Joachim A1 - Johannessen, Anne Christine A1 - McCormack, Emmet A1 - Costea, Daniela Elena T1 - Nanodiamond modified copolymer scaffolds affects tumour progression of early neoplastic oral keratinocytes JF - Biomaterials N2 - This study aimed to evaluate the tumorigenic potential of functionalising poly(LLA-co-CL) scaffolds. The copolymer scaffolds were functionalised with nanodiamonds (nDP) or with nDP and physisorbed BMP-2 (nDP-PHY) to enhance osteoinductivity. Culturing early neoplastic dysplastic keratinocytes (DOK\(^{Luc}\)) on nDP modified scaffolds reduced significantly their subsequent sphere formation ability and decreased significantly the cells' proliferation in the supra-basal layers of in vitro 3D oral neoplastic mucosa (3D-OT) when compared to DOK\(^{Luc}\) previously cultured on nDP-PHY scaffolds. Using an in vivo non-invasive environmentally-induced oral carcinogenesis model, nDP scaffolds were observed to reduce bioluminescence intensity of tumours formed by DOK\(^{Luc}\) + carcinoma associated fibroblasts (CAF). nDP modification was also found to promote differentiation of DOK\(^{Luc}\) both in vitro in 3D-OT and in vivo in xenografts formed by DOKLuc alone. The nDP-PHY scaffold had the highest number of invasive tumours formed by DOK\(^{Luc}\) + CAF outside the scaffold area compared to the nDP and control scaffolds. In conclusion, in vitro and in vivo results presented here demonstrate that nDP modified copolymer scaffolds are able to decrease the tumorigenic potential of DOK\(^{Luc}\), while confirming concerns for the therapeutic use of BMP-2 for reconstruction of bone defects in oral cancer patients due to its tumour promoting capabilities. KW - Bone morphogenetic protein-2 KW - Sinus floor augmentation KW - Marrow stromal cells KW - Growth; BMP-2 KW - Tumorigenicity KW - Biodegradable polymer scaffolds KW - Mandibular continuity defects KW - Squamous-cell carcinoma KW - In-vitro KW - Mesenchymal transition KW - BMP-2 KW - Bone tissue engineering KW - Biocompatibility KW - Microenvironment KW - Oral squamous cell carcinoma Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-188287 VL - 95 ER -