TY - JOUR A1 - Xu, Jietao A1 - Fahmy-Garcia, Shorouk A1 - Wesdorp, Marinus A. A1 - Kops, Nicole A1 - Forte, Lucia A1 - De Luca, Claudio A1 - Misciagna, Massimiliano Maraglino A1 - Dolcini, Laura A1 - Filardo, Giuseppe A1 - Labberté, Margot A1 - Vancíková, Karin A1 - Kok, Joeri A1 - van Rietbergen, Bert A1 - Nickel, Joachim A1 - Farrell, Eric A1 - Brama, Pieter A. J. A1 - van Osch, Gerjo J. V. M. T1 - Effectiveness of BMP-2 and PDGF-BB adsorption onto a collagen/collagen-magnesium-hydroxyapatite scaffold in weight-bearing and non-weight-bearing osteochondral defect bone repair: in vitro, ex vivo and in vivo evaluation JF - Journal of Functional Biomaterials N2 - Despite promising clinical results in osteochondral defect repair, a recently developed bi-layered collagen/collagen-magnesium-hydroxyapatite scaffold has demonstrated less optimal subchondral bone repair. This study aimed to improve the bone repair potential of this scaffold by adsorbing bone morphogenetic protein 2 (BMP-2) and/or platelet-derived growth factor-BB (PDGF-BB) onto said scaffold. The in vitro release kinetics of BMP-2/PDGF-BB demonstrated that PDGF-BB was burst released from the collagen-only layer, whereas BMP-2 was largely retained in both layers. Cell ingrowth was enhanced by BMP-2/PDFG-BB in a bovine osteochondral defect ex vivo model. In an in vivo semi-orthotopic athymic mouse model, adding BMP-2 or PDGF-BB increased tissue repair after four weeks. After eight weeks, most defects were filled with bone tissue. To further investigate the promising effect of BMP-2, a caprine bilateral stifle osteochondral defect model was used where defects were created in weight-bearing femoral condyle and non-weight-bearing trochlear groove locations. After six months, the adsorption of BMP-2 resulted in significantly less bone repair compared with scaffold-only in the femoral condyle defects and a trend to more bone repair in the trochlear groove. Overall, the adsorption of BMP-2 onto a Col/Col-Mg-HAp scaffold reduced bone formation in weight-bearing osteochondral defects, but not in non-weight-bearing osteochondral defects. KW - tissue engineering KW - regenerative medicine KW - osteochondral lesion KW - biocompatible materials KW - bone morphogenetic proteins KW - platelet-derived growth factor KW - animal model KW - weight-bearing Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-304019 SN - 2079-4983 VL - 14 IS - 2 ER - TY - JOUR A1 - Siverino, Claudia A1 - Fahmy-Garcia, Shorouk A1 - Niklaus, Viktoria A1 - Kops, Nicole A1 - Dolcini, Laura A1 - Misciagna, Massimiliano Maraglino A1 - Ridwan, Yanto A1 - Farrell, Eric A1 - van Osch, Gerjo J. V. M. A1 - Nickel, Joachim T1 - Addition of heparin binding sites strongly increases the bone forming capabilities of BMP9 in vivo JF - Bioactive Materials N2 - Highlights • Despite not being crucial for bone development BMP9 can induce bone growth in vivo. • BMP9 induced bone formation is strongly enhanced by introduced heparin binding sites. • BMP9s bone forming capabilities are triggered by extracellular matrix binding. • Heparin binding BMP9 (BMP9 HB) can improve the current therapies in treating bone fractures. Abstract Bone Morphogenetic proteins (BMPs) like BMP2 and BMP7 have shown great potential in the treatment of severe bone defects. In recent in vitro studies, BMP9 revealed the highest osteogenic potential compared to other BMPs, possibly due to its unique signaling pathways that differs from other osteogenic BMPs. However, in vivo the bone forming capacity of BMP9-adsorbed scaffolds is not superior to BMP2 or BMP7. In silico analysis of the BMP9 protein sequence revealed that BMP9, in contrast to other osteogenic BMPs such as BMP2, completely lacks so-called heparin binding motifs that enable extracellular matrix (ECM) interactions which in general might be essential for the BMPs' osteogenic function. Therefore, we genetically engineered a new BMP9 variant by adding BMP2-derived heparin binding motifs to the N-terminal segment of BMP9′s mature part. The resulting protein (BMP9 HB) showed higher heparin binding affinity than BMP2, similar osteogenic activity in vitro and comparable binding affinities to BMPR-II and ALK1 compared to BMP9. However, remarkable differences were observed when BMP9 HB was adsorbed to collagen scaffolds and implanted subcutaneously in the dorsum of rats, showing a consistent and significant increase in bone volume and density compared to BMP2 and BMP9. Even at 10-fold lower BMP9 HB doses bone tissue formation was observed. This innovative approach of significantly enhancing the osteogenic properties of BMP9 simply by addition of ECM binding motifs, could constitute a valuable replacement to the commonly used BMPs. The possibility to use lower protein doses demonstrates BMP9 HB's high translational potential. KW - bone morphogenetic protein 9 (BMP9) KW - heparin binding sites KW - bone regeneration KW - subcutaneous animal model Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-350470 VL - 29 ER - TY - JOUR A1 - Weißenberger, Manuel A1 - Wagenbrenner, Mike A1 - Nickel, Joachim A1 - Ahlbrecht, Rasmus A1 - Blunk, Torsten A1 - Steinert, Andre F. A1 - Gilbert, Fabian T1 - Comparative in vitro treatment of mesenchymal stromal cells with GDF-5 and R57A induces chondrogenic differentiation while limiting chondrogenic hypertrophy JF - Journal of Experimental Orthopaedics N2 - Purpose Hypertrophic cartilage is an important characteristic of osteoarthritis and can often be found in patients suffering from osteoarthritis. Although the exact pathomechanism remains poorly understood, hypertrophic de-differentiation of chondrocytes also poses a major challenge in the cell-based repair of hyaline cartilage using mesenchymal stromal cells (MSCs). While different members of the transforming growth factor beta (TGF-β) family have been shown to promote chondrogenesis in MSCs, the transition into a hypertrophic phenotype remains a problem. To further examine this topic we compared the effects of the transcription growth and differentiation factor 5 (GDF-5) and the mutant R57A on in vitro chondrogenesis in MSCs. Methods Bone marrow-derived MSCs (BMSCs) were placed in pellet culture and in-cubated in chondrogenic differentiation medium containing R57A, GDF-5 and TGF-ß1 for 21 days. Chondrogenesis was examined histologically, immunohistochemically, through biochemical assays and by RT-qPCR regarding the expression of chondrogenic marker genes. Results Treatment of BMSCs with R57A led to a dose dependent induction of chondrogenesis in BMSCs. Biochemical assays also showed an elevated glycosaminoglycan (GAG) content and expression of chondrogenic marker genes in corresponding pellets. While treatment with R57A led to superior chondrogenic differentiation compared to treatment with the GDF-5 wild type and similar levels compared to incubation with TGF-ß1, levels of chondrogenic hypertrophy were lower after induction with R57A and the GDF-5 wild type. Conclusions R57A is a stronger inducer of chondrogenesis in BMSCs than the GDF-5 wild type while leading to lower levels of chondrogenic hypertrophy in comparison with TGF-ß1. KW - bone marrow KW - cartilage KW - chondrogenesis KW - chondrogenic hypertrophy KW - mesenchymal stromal cell KW - GDF-5 KW - R57A Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-357770 VL - 10 ER - TY - JOUR A1 - Borova, Solomiia A1 - Schlutt, Christine A1 - Nickel, Joachim A1 - Luxenhofer, Robert T1 - A Transient Initiator for Polypeptoids Postpolymerization α‐Functionalization via Activation of a Thioester Group JF - Macromolecular Chemistry and Physics N2 - Here, a postpolymerization modification method for an α-terminal functionalized poly-(N-methyl-glycine), also known as polysarcosine, is introduced. 4-(Methylthio)phenyl piperidine-4-carboxylate as an initiator for the ring-opening polymerization of N-methyl-glycine-N-carboxyanhydride followed by oxidation of the thioester group to yield an α-terminal reactive 4-(methylsulfonyl)phenyl piperidine-4-carboxylate polymer is utilized. This represents an activated carboxylic acid terminus, allowing straightforward modification with nucleophiles under mild reaction conditions and provides the possibility to introduce a wide variety of nucleophiles as exemplified using small molecules, fluorescent dyes, and model proteins. The new initiator yielded polymers with well-defined molar mass, low dispersity, and high end-group fidelity, as observed by gel permeation chromatography, nuclear magnetic resonance spectroscopy, and matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy. The introduced method can be of great interest for bioconjugation, but requires optimization, especially for protein conjugation. KW - ring-opening polymerization KW - bioconjugation KW - functional initiators KW - polypeptoids KW - postpolymerization modification Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-257587 VL - 223 IS - 3 ER - TY - JOUR A1 - Siverino, Claudia A1 - Fahmy-Garcia, Shorouk A1 - Mumcuoglu, Didem A1 - Oberwinkler, Heike A1 - Muehlemann, Markus A1 - Mueller, Thomas A1 - Farrell, Eric A1 - van Osch, Gerjo J. V. M. A1 - Nickel, Joachim T1 - Site-directed immobilization of an engineered bone morphogenetic protein 2 (BMP2) variant to collagen-based microspheres induces bone formation in vivo JF - International Journal of Molecular Sciences N2 - For the treatment of large bone defects, the commonly used technique of autologous bone grafting presents several drawbacks and limitations. With the discovery of the bone-inducing capabilities of bone morphogenetic protein 2 (BMP2), several delivery techniques were developed and translated to clinical applications. Implantation of scaffolds containing adsorbed BMP2 showed promising results. However, off-label use of this protein-scaffold combination caused severe complications due to an uncontrolled release of the growth factor, which has to be applied in supraphysiological doses in order to induce bone formation. Here, we propose an alternative strategy that focuses on the covalent immobilization of an engineered BMP2 variant to biocompatible scaffolds. The new BMP2 variant harbors an artificial amino acid with a specific functional group, allowing a site-directed covalent scaffold functionalization. The introduced artificial amino acid does not alter BMP2′s bioactivity in vitro. When applied in vivo, the covalently coupled BMP2 variant induces the formation of bone tissue characterized by a structurally different morphology compared to that induced by the same scaffold containing ab-/adsorbed wild-type BMP2. Our results clearly show that this innovative technique comprises translational potential for the development of novel osteoinductive materials, improving safety for patients and reducing costs. KW - bone morphogenetic protein 2 (BMP2) KW - bone regeneration KW - covalent coupling KW - subcutaneous animal model Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-284572 SN - 1422-0067 VL - 23 IS - 7 ER - TY - JOUR A1 - Nickel, Joachim A1 - Mueller, Thomas D. T1 - Specification of BMP signaling JF - Cells N2 - Bone Morphogenetic Proteins (BMPs) together with the Growth and Differentiation Factors (GDFs) form the largest subgroup of the Transforming Growth Factor (TGF)β family and represent secreted growth factors, which play an essential role in many aspects of cell communication in higher organisms. As morphogens they exert crucial functions during embryonal development, but are also involved in tissue homeostasis and regeneration in the adult organism. Their involvement in maintenance and repair processes of various tissues and organs made these growth factors highly interesting targets for novel pharmaceutical applications in regenerative medicine. A hallmark of the TGFβ protein family is that all of the more than 30 growth factors identified to date signal by binding and hetero-oligomerization of a very limited set of transmembrane serine-threonine kinase receptors, which can be classified into two subgroups termed type I and type II. Only seven type I and five type II receptors exist for all 30plus TGFβ members suggesting a pronounced ligand-receptor promiscuity. Indeed, many TGFβ ligands can bind the same type I or type II receptor and a particular receptor of either subtype can usually interact with and bind various TGFβ ligands. The possible consequence of this ligand-receptor promiscuity is further aggravated by the finding that canonical TGFβ signaling of all family members seemingly results in the activation of just two distinct signaling pathways, that is either SMAD2/3 or SMAD1/5/8 activation. While this would implicate that different ligands can assemble seemingly identical receptor complexes that activate just either one of two distinct pathways, in vitro and in vivo analyses show that the different TGFβ members exert quite distinct biological functions with high specificity. This discrepancy indicates that our current view of TGFβ signaling initiation just by hetero-oligomerization of two receptor subtypes and transduction via two main pathways in an on-off switch manner is too simplified. Hence, the signals generated by the various TGFβ members are either quantitatively interpreted using the subtle differences in their receptor-binding properties leading to ligand-specific modulation of the downstream signaling cascade or additional components participating in the signaling activation complex allow diversification of the encoded signal in a ligand-dependent manner at all cellular levels. In this review we focus on signal specification of TGFβ members, particularly of BMPs and GDFs addressing the role of binding affinities, specificities, and kinetics of individual ligand-receptor interactions for the assembly of specific receptor complexes with potentially distinct signaling properties. KW - TGFβ/BMP signaling KW - ligand-receptor promiscuity KW - signal specification Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-193869 SN - 2073-4409 VL - 8 IS - 12 ER - TY - JOUR A1 - Stuckensen, Kai A1 - Lamo-Espinosa, José M. A1 - Muiños-López, Emma A1 - Ripalda-Cemboráin, Purificación A1 - López-Martínez, Tania A1 - Iglesias, Elena A1 - Abizanda, Gloria A1 - Andreu, Ion A1 - Flandes-Iparraguirre, María A1 - Pons-Villanueva, Juan A1 - Elizalde, Reyes A1 - Nickel, Joachim A1 - Ewald, Andrea A1 - Gbureck, Uwe A1 - Prósper, Felipe A1 - Groll, Jürgen A1 - Granero-Moltó, Froilán T1 - Anisotropic cryostructured collagen scaffolds for efficient delivery of RhBMP−2 and enhanced bone regeneration JF - Materials N2 - In the treatment of bone non-unions, an alternative to bone autografts is the use of bone morphogenetic proteins (BMPs), e.g., BMP–2, BMP–7, with powerful osteoinductive and osteogenic properties. In clinical settings, these osteogenic factors are applied using absorbable collagen sponges for local controlled delivery. Major side effects of this strategy are derived from the supraphysiological doses of BMPs needed, which may induce ectopic bone formation, chronic inflammation, and excessive bone resorption. In order to increase the efficiency of the delivered BMPs, we designed cryostructured collagen scaffolds functionalized with hydroxyapatite, mimicking the structure of cortical bone (aligned porosity, anisotropic) or trabecular bone (random distributed porosity, isotropic). We hypothesize that an anisotropic structure would enhance the osteoconductive properties of the scaffolds by increasing the regenerative performance of the provided rhBMP–2. In vitro, both scaffolds presented similar mechanical properties, rhBMP–2 retention and delivery capacity, as well as scaffold degradation time. In vivo, anisotropic scaffolds demonstrated better bone regeneration capabilities in a rat femoral critical-size defect model by increasing the defect bridging. In conclusion, anisotropic cryostructured collagen scaffolds improve bone regeneration by increasing the efficiency of rhBMP–2 mediated bone healing. KW - rhBMP–2 KW - collagen sponge KW - cryostructured scaffolds KW - bone critical size defect Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-195966 SN - 1996-1944 VL - 12 IS - 19 ER - TY - JOUR A1 - Belka, Janina A1 - Nickel, Joachim A1 - Kurth, Dirk G. T1 - Growth on metallo-supramolecular coordination polyelectrolyte (MEPE) stimulates osteogenic differentiation of human osteosarcoma cells (MG63) and human bone marrow derived mesenchymal stem cells JF - Polymers N2 - Background: Culturing of cells is typically performed on standard tissue culture plates generating growth conditions, which in general do not reflect the native three-dimensional cellular environment. Recent investigations provide insights in parameters, which strongly affect the general cellular behavior triggering essential processes such as cell differentiation. The physical properties of the used material, such as stiffness, roughness, or topology, as well as the chemical composition of the cell-surface interface are shown to play a key role in the initiation of particular cellular responses. Methods: We extended our previous research, which identified thin films of metallo-supramolecular coordination polyelectrolytes (MEPEs) as substrate to trigger the differentiation of muscular precursor cells. Results: Here, we show that the same MEPEs similarly stimulate the osteogenic differentiation of pre-osteoblasts. Remarkably, MEPE modified surfaces also trigger the differentiation of primary bone derived mesenchymal stem cells (BMSCs) towards the osteogenic lineage. Conclusion: This result leads to the conclusion that these surfaces individually support the specification of cell differentiation toward lineages that correspond to the natural commitment of the particular cell types. We, therefore, propose that Fe-MEPEs may be used as scaffold for the treatment of defects at least in muscular or bone tissue. KW - cell differentiation KW - metallo-supramolecular polymer KW - interface KW - iron metabolism Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-197264 SN - 2073-4360 VL - 11 IS - 7 ER - TY - JOUR A1 - Kress, Sebastian A1 - Baur, Johannes A1 - Otto, Christoph A1 - Burkard, Natalie A1 - Braspenning, Joris A1 - Walles, Heike A1 - Nickel, Joachim A1 - Metzger, Marco T1 - Evaluation of a miniaturized biologically vascularized scaffold in vitro and in vivo JF - Scientific Reports N2 - In tissue engineering, the generation and functional maintenance of dense voluminous tissues is mainly restricted due to insufficient nutrient supply. Larger three-dimensional constructs, which exceed the nutrient diffusion limit become necrotic and/or apoptotic in long-term culture if not provided with an appropriate vascularization. Here, we established protocols for the generation of a pre-vascularized biological scaffold with intact arterio-venous capillary loops from rat intestine, which is decellularized under preservation of the feeding and draining vascular tree. Vessel integrity was proven by marker expression, media/blood reflow and endothelial LDL uptake. In vitro maintenance persisted up to 7 weeks in a bioreactor system allowing a stepwise reconstruction of fully vascularized human tissues and successful in vivo implantation for up to 4 weeks, although with time-dependent decrease of cell viability. The vascularization of the construct lead to a 1.5× increase in cellular drug release compared to a conventional static culture in vitro. For the first time, we performed proof-of-concept studies demonstrating that 3D tissues can be maintained within a miniaturized vascularized scaffold in vitro and successfully implanted after re-anastomosis to the intrinsic blood circulation in vivo. We hypothesize that this technology could serve as a powerful platform technology in tissue engineering and regenerative medicine. KW - biological models KW - translational research Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-176343 VL - 8 IS - 4719 ER - TY - JOUR A1 - Schliermann, Anna A1 - Nickel, Joachim T1 - Unraveling the connection between fibroblast growth factor and bone morphogenetic protein signaling JF - International Journal of Molecular Sciences N2 - Ontogeny of higher organisms as well the regulation of tissue homeostasis in adult individuals requires a fine-balanced interplay of regulating factors that individually trigger the fate of particular cells to either stay undifferentiated or to differentiate towards distinct tissue specific lineages. In some cases, these factors act synergistically to promote certain cellular responses, whereas in other tissues the same factors antagonize each other. However, the molecular basis of this obvious dual signaling activity is still only poorly understood. Bone morphogenetic proteins (BMPs) and fibroblast growth factors (FGFs) are two major signal protein families that have a lot in common: They are both highly preserved between different species, involved in essential cellular functions, and their ligands vastly outnumber their receptors, making extensive signal regulation necessary. In this review we discuss where and how BMP and FGF signaling cross paths. The compiled data reflect that both factors synchronously act in many tissues, and that antagonism and synergism both exist in a context-dependent manner. Therefore, by challenging a generalization of the connection between these two pathways a new chapter in BMP FGF signaling research will be introduced. KW - bone morphogenetic protein KW - fibroblast growth factor KW - signal transduction KW - cross-talk KW - signal integration Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-177358 SN - 1422-0067 VL - 19 IS - 10 ER -