TY - JOUR A1 - Nagy, Magdolna A1 - van Geffen, Johanna P. A1 - Stegner, David A1 - Adams, David J. A1 - Braun, Attila A1 - de Witt, Susanne M. A1 - Elvers, Margitta A1 - Geer, Mitchell J. A1 - Kuijpers, Marijke J. E. A1 - Kunzelmann, Karl A1 - Mori, Jun A1 - Oury, Cécile A1 - Pircher, Joachim A1 - Pleines, Irina A1 - Poole, Alastair W. A1 - Senis, Yotis A. A1 - Verdoold, Remco A1 - Weber, Christian A1 - Nieswandt, Bernhard A1 - Heemskerk, Johan W. M. A1 - Baaten, Constance C. F. M. J. T1 - Comparative Analysis of Microfluidics Thrombus Formation in Multiple Genetically Modified Mice: Link to Thrombosis and Hemostasis JF - Frontiers in Cardiovascular Medicine N2 - Genetically modified mice are indispensable for establishing the roles of platelets in arterial thrombosis and hemostasis. Microfluidics assays using anticoagulated whole blood are commonly used as integrative proxy tests for platelet function in mice. In the present study, we quantified the changes in collagen-dependent thrombus formation for 38 different strains of (genetically) modified mice, all measured with the same microfluidics chamber. The mice included were deficient in platelet receptors, protein kinases or phosphatases, small GTPases or other signaling or scaffold proteins. By standardized re-analysis of high-resolution microscopic images, detailed information was obtained on altered platelet adhesion, aggregation and/or activation. For a subset of 11 mouse strains, these platelet functions were further evaluated in rhodocytin- and laminin-dependent thrombus formation, thus allowing a comparison of glycoprotein VI (GPVI), C-type lectin-like receptor 2 (CLEC2) and integrin α6β1 pathways. High homogeneity was found between wild-type mice datasets concerning adhesion and aggregation parameters. Quantitative comparison for the 38 modified mouse strains resulted in a matrix visualizing the impact of the respective (genetic) deficiency on thrombus formation with detailed insight into the type and extent of altered thrombus signatures. Network analysis revealed strong clusters of genes involved in GPVI signaling and Ca2+ homeostasis. The majority of mice demonstrating an antithrombotic phenotype in vivo displayed with a larger or smaller reduction in multi-parameter analysis of collagen-dependent thrombus formation in vitro. Remarkably, in only approximately half of the mouse strains that displayed reduced arterial thrombosis in vivo, this was accompanied by impaired hemostasis. This was also reflected by comparing in vitro thrombus formation (by microfluidics) with alterations in in vivo bleeding time. In conclusion, the presently developed multi-parameter analysis of thrombus formation using microfluidics can be used to: (i) determine the severity of platelet abnormalities; (ii) distinguish between altered platelet adhesion, aggregation and activation; and (iii) elucidate both collagen and non-collagen dependent alterations of thrombus formation. This approach may thereby aid in the better understanding and better assessment of genetic variation that affect in vivo arterial thrombosis and hemostasis. KW - arterial thrombus formation KW - bleeding KW - collagen KW - glycoprotein VI KW - platelets KW - microfluidics Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-232194 VL - 6 ER - TY - JOUR A1 - Gotru, Sanjeev Kiran A1 - van Geffen, Johanna P. A1 - Nagy, Magdolna A1 - Mammadova-Bach, Elmina A1 - Eilenberger, Julia A1 - Volz, Julia A1 - Manukjan, Georgi A1 - Schulze, Harald A1 - Wagner, Leonard A1 - Eber, Stefan A1 - Schambeck, Christian A1 - Deppermann, Carsten A1 - Brouns, Sanne A1 - Nurden, Paquita A1 - Greinacher, Andreas A1 - Sachs, Ulrich A1 - Nieswandt, Bernhard A1 - Hermanns, Heike M. A1 - Heemskerk, Johan W. M. A1 - Braun, Attila T1 - Defective Zn2+ homeostasis in mouse and human platelets with α- and δ-storage pool diseases JF - Scientific Reports N2 - Zinc (Zn2+) can modulate platelet and coagulation activation pathways, including fibrin formation. Here, we studied the (patho)physiological consequences of abnormal platelet Zn2+ storage and release. To visualize Zn2+ storage in human and mouse platelets, the Zn2+ specific fluorescent dye FluoZin3 was used. In resting platelets, the dye transiently accumulated into distinct cytosolic puncta, which were lost upon platelet activation. Platelets isolated from Unc13d−/− mice, characterized by combined defects of α/δ granular release, showed a markedly impaired Zn2+ release upon activation. Platelets from Nbeal2−/− mice mimicking Gray platelet syndrome (GPS), characterized by primarily loss of the α-granule content, had strongly reduced Zn2+ levels, which was also confirmed in primary megakaryocytes. In human platelets isolated from patients with GPS, Hermansky-Pudlak Syndrome (HPS) and Storage Pool Disease (SPD) altered Zn2+ homeostasis was detected. In turbidity and flow based assays, platelet-dependent fibrin formation was impaired in both Nbeal2−/− and Unc13d−/− mice, and the impairment could be partially restored by extracellular Zn2+. Altogether, we conclude that the release of ionic Zn2+ store from secretory granules upon platelet activation contributes to the procoagulant role of Zn2+ in platelet-dependent fibrin formation. KW - coagulation system KW - metals Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-227455 VL - 9 ER - TY - JOUR A1 - Navarro, Stefano A1 - Starke, Andreas A1 - Heemskerk, Johan W. M. A1 - Kuijpers, Marijke J. E. A1 - Stegner, David A1 - Nieswandt, Bernhard T1 - Targeting of a conserved epitope in mouse and human GPVI differently affects receptor function JF - International Journal of Molecular Sciences N2 - Glycoprotein (GP) VI is the major platelet collagen receptor and a promising anti-thrombotic target. This was first demonstrated in mice using the rat monoclonal antibody JAQ1, which completely blocks the Collagen-Related Peptide (CRP)-binding site on mouse GPVI and efficiently inhibits mouse platelet adhesion, activation and aggregation on collagen. Here, we show for the first time that JAQ1 cross-reacts with human GPVI (huGPVI), but not with GPVI in other tested species, including rat, rabbit, guinea pig, swine, and dog. We further demonstrate that JAQ1 differently modulates mouse and human GPVI function. Similar to its effects on mouse GPVI (mGPVI), JAQ1 inhibits CRP-induced activation in human platelets, whereas, in stark contrast to mouse GPVI, it does not inhibit the adhesion, activation or aggregate formation of human platelets on collagen, but causes instead an increased response. This effect was also seen with platelets from newly generated human GPVI knockin mice (hGP6\(^{tg/tg\)). These results indicate that the binding of JAQ1 to a structurally conserved epitope in GPVI differently affects its function in human and mouse platelets. KW - glycoprotein VI KW - JAQ1 KW - platelet receptors KW - platelet activation KW - platelet inhibition Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-286227 SN - 1422-0067 VL - 23 IS - 15 ER - TY - JOUR A1 - Navarro, Stefano A1 - Stegner, David A1 - Nieswandt, Bernhard A1 - Heemskerk, Johan W. M. A1 - Kuijpers, Marijke J. E. T1 - Temporal roles of platelet and coagulation pathways in collagen- and tissue factor-induced thrombus formation JF - International Journal of Molecular Sciences N2 - In hemostasis and thrombosis, the complex process of thrombus formation involves different molecular pathways of platelet and coagulation activation. These pathways are considered as operating together at the same time, but this has not been investigated. The objective of our study was to elucidate the time-dependency of key pathways of thrombus and clot formation, initiated by collagen and tissue factor surfaces, where coagulation is triggered via the extrinsic route. Therefore, we adapted a microfluidics whole-blood assay with the Maastricht flow chamber to acutely block molecular pathways by pharmacological intervention at desired time points. Application of the technique revealed crucial roles of glycoprotein VI (GPVI)-induced platelet signaling via Syk kinase as well as factor VIIa-induced thrombin generation, which were confined to the first minutes of thrombus buildup. A novel anti-GPVI Fab EMF-1 was used for this purpose. In addition, platelet activation with the protease-activating receptors 1/4 (PAR1/4) and integrin αIIbβ3 appeared to be prolongedly active and extended to later stages of thrombus and clot formation. This work thereby revealed a more persistent contribution of thrombin receptor-induced platelet activation than of collagen receptor-induced platelet activation to the thrombotic process. KW - coagulation KW - fibrin KW - glycoprotein VI KW - platelet receptors KW - spatiotemporal thrombus KW - thrombin Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-284219 SN - 1422-0067 VL - 23 IS - 1 ER - TY - JOUR A1 - Perrella, Gina A1 - Montague, Samantha J. A1 - Brown, Helena C. A1 - Garcia Quintanilla, Lourdes A1 - Slater, Alexandre A1 - Stegner, David A1 - Thomas, Mark A1 - Heemskerk, Johan W. M. A1 - Watson, Steve P. T1 - Role of tyrosine kinase Syk in thrombus stabilisation at high shear JF - International Journal of Molecular Sciences N2 - Understanding the pathways involved in the formation and stability of the core and shell regions of a platelet-rich arterial thrombus may result in new ways to treat arterial thrombosis. The distinguishing feature between these two regions is the absence of fibrin in the shell which indicates that in vitro flow-based assays over thrombogenic surfaces, in the absence of coagulation, can be used to resemble this region. In this study, we have investigated the contribution of Syk tyrosine kinase in the stability of platelet aggregates (or thrombi) formed on collagen or atherosclerotic plaque homogenate at arterial shear (1000 s\(^{−1}\)). We show that post-perfusion of the Syk inhibitor PRT-060318 over preformed thrombi on both surfaces enhances thrombus breakdown and platelet detachment. The resulting loss of thrombus stability led to a reduction in thrombus contractile score which could be detected as early as 3 min after perfusion of the Syk inhibitor. A similar loss of thrombus stability was observed with ticagrelor and indomethacin, inhibitors of platelet adenosine diphosphate (ADP) receptor and thromboxane A\(_2\) (TxA\(_2\)), respectively, and in the presence of the Src inhibitor, dasatinib. In contrast, the Btk inhibitor, ibrutinib, causes only a minor decrease in thrombus contractile score. Weak thrombus breakdown is also seen with the blocking GPVI nanobody, Nb21, which indicates, at best, a minor contribution of collagen to the stability of the platelet aggregate. These results show that Syk regulates thrombus stability in the absence of fibrin in human platelets under flow and provide evidence that this involves pathways additional to activation of GPVI by collagen. KW - disaggregation KW - platelet KW - Syk KW - thrombus KW - tyrosine kinase Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-284243 SN - 1422-0067 VL - 23 IS - 1 ER -