TY - JOUR A1 - Herrmann, Johannes A1 - Muenstermann, Marcel A1 - Strobel, Lea A1 - Schubert-Unkmeir, Alexandra A1 - Woodruff, Trent M. A1 - Gray-Owen, Scott D. A1 - Klos, Andreas A1 - Johswich, Kay O. T1 - Complement C5a receptor 1 exacerbates the pathophysiology of N. meningitidis sepsis and is a potential target for disease treatment JF - mBio N2 - Sepsis caused by Neisseria meningitidis (meningococcus) is a rapidly progressing, life-threatening disease. Because its initial symptoms are rather unspecific, medical attention is often sought too late, i.e., when the systemic inflammatory response is already unleashed. This in turn limits the success of antibiotic treatment. The complement system is generally accepted as the most important innate immune determinant against invasive meningococcal disease since it protects the host through the bactericidal membrane attack complex. However, complement activation concomitantly liberates the C5a peptide, and it remains unclear whether this potent anaphylatoxin contributes to protection and/or drives the rapidly progressing immunopathogenesis associated with meningococcal disease. Here, we dissected the specific contribution of C5a receptor 1 (C5aR1), the canonical receptor for C5a, using a mouse model of meningococcal sepsis. Mice lacking C3 or C5 displayed susceptibility that was enhanced by >1,000-fold or 100-fold, respectively, consistent with the contribution of these components to protection. In clear contrast, C5ar1\(^{-/-}\) mice resisted invasive meningococcal infection and cleared N. meningitidis more rapidly than wild-type (WT) animals. This favorable outcome stemmed from an ameliorated inflammatory cytokine response to N. meningitidis in C5ar1\(^{-/-}\) mice in both in vivo and ex vivo whole-blood infections. In addition, inhibition of C5aR1 signaling without interference with the complement bactericidal activity reduced the inflammatory response also in human whole blood. Enticingly, pharmacologic C5aR1 blockade enhanced mouse survival and lowered meningococcal burden even when the treatment was administered after sepsis induction. Together, our findings demonstrate that C5aR1 drives the pathophysiology associated with meningococcal sepsis and provides a promising target for adjunctive therapy. Importance: The devastating consequences of N. meningitidis sepsis arise due to the rapidly arising and self-propagating inflammatory response that mobilizes antibacterial defenses but also drives the immunopathology associated with meningococcemia. The complement cascade provides innate broad-spectrum protection against infection by directly damaging the envelope of pathogenic microbes through the membrane attack complex and triggers an inflammatory response via the C5a peptide and its receptor C5aR1 aimed at mobilizing cellular effectors of immunity. Here, we consider the potential of separating the bactericidal activities of the complement cascade from its immune activating function to improve outcome of N. meningitidis sepsis. Our findings demonstrate that the specific genetic or pharmacological disruption of C5aR1 rapidly ameliorates disease by suppressing the pathogenic inflammatory response and, surprisingly, allows faster clearance of the bacterial infection. This outcome provides a clear demonstration of the therapeutic benefit of the use of C5aR1-specific inhibitors to improve the outcome of invasive meningococcal disease. KW - C5aR1 KW - whole-blood model KW - Neisseria meningitidis KW - anaphylatoxins KW - complement system KW - inflammation KW - invasive disease KW - mouse model KW - neutrophils KW - sepsis Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-175792 VL - 9 IS - 1 ER - TY - JOUR A1 - Notz, Quirin A1 - Schmalzing, Marc A1 - Wedekink, Florian A1 - Schlesinger, Tobias A1 - Gernert, Michael A1 - Herrmann, Johannes A1 - Sorger, Lena A1 - Weismann, Dirk A1 - Schmid, Benedikt A1 - Sitter, Magdalena A1 - Schlegel, Nicolas A1 - Kranke, Peter A1 - Wischhusen, Jörg A1 - Meybohm, Patrick A1 - Lotz, Christopher T1 - Pro- and Anti-Inflammatory Responses in Severe COVID-19-Induced Acute Respiratory Distress Syndrome—An Observational Pilot Study JF - Frontiers in Immunology N2 - Objectives The severity of Coronavirus Disease 2019 (COVID-19) is largely determined by the immune response. First studies indicate altered lymphocyte counts and function. However, interactions of pro- and anti-inflammatory mechanisms remain elusive. In the current study we characterized the immune responses in patients suffering from severe COVID-19-induced acute respiratory distress syndrome (ARDS). Methods This was a single-center retrospective study in patients admitted to the intensive care unit (ICU) with confirmed COVID-19 between March 14th and May 28th 2020 (n = 39). Longitudinal data were collected within routine clinical care, including flow-cytometry of lymphocyte subsets, cytokine analysis and growth differentiation factor 15 (GDF-15). Antibody responses against the receptor binding domain (RBD) of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Spike protein were analyzed. Results All patients suffered from severe ARDS, 30.8% died. Interleukin (IL)-6 was massively elevated at every time-point. The anti-inflammatory cytokine IL-10 was concomitantly upregulated with IL-6. The cellular response was characterized by lymphocytopenia with low counts of CD8+ T cells, natural killer (NK) and naïve T helper cells. CD8+ T and NK cells recovered after 8 to 14 days. The B cell system was largely unimpeded. This coincided with a slight increase in anti-SARS-CoV-2-Spike-RBD immunoglobulin (Ig) G and a decrease in anti-SARS-CoV-2-Spike-RBD IgM. GDF-15 levels were elevated throughout ICU treatment. Conclusions Massively elevated levels of IL-6 and a delayed cytotoxic immune defense characterized severe COVID-19-induced ARDS. The B cell response and antibody production were largely unimpeded. No obvious imbalance of pro- and anti-inflammatory mechanisms was observed, with elevated GDF-15 levels suggesting increased tissue resilience. KW - Coronavirus Disease 2019 KW - acute respiratory distress syndrome KW - Severe Acute Respiratory Syndrome Coronavirus 2 KW - cytokines KW - inflammation KW - growth differentiation factor 15 KW - immune response Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-212815 SN - 1664-3224 VL - 11 ER -