TY - JOUR A1 - Rodríguez-Mari, Adriana A1 - Wilson, Catherine A1 - Titus, Tom A. A1 - Canestro, Cristian A1 - BreMiller, Ruth A. A1 - Yan, Yi-Lin A1 - Nanda, Indrajit A1 - Johnston, Adam A1 - Kanki, John P. A1 - Gray, Erin M. A1 - He, Xinjun A1 - Spitsbergen, Jan A1 - Schindler, Detlev A1 - Postlethwait, John H. T1 - Roles of brca2 (fancd1) in Oocyte Nuclear Architecture, Gametogenesis, Gonad Tumors, and Genome Stability in Zebrafish JF - PLoS Genetics N2 - Functional near-infrared spectroscopy (fNIRS) is an established optical neuroimaging method for measuring functional hemodynamic responses to infer neural activation. However, the impact of individual anatomy on the sensitivity of fNIRS measuring hemodynamics within cortical gray matter is still unknown. By means of Monte Carlo simulations and structural MRI of 23 healthy subjects (mean age: (25.0 +/- 2.8) years), we characterized the individual distribution of tissue-specific NIR-light absorption underneath 24 prefrontal fNIRS channels. We, thereby, investigated the impact of scalp-cortex distance (SCD), frontal sinus volume as well as sulcal morphology on gray matter volumes (V(gray)) traversed by NIR-light, i.e. anatomy-dependent fNIRS sensitivity. The NIR-light absorption between optodes was distributed describing a rotational ellipsoid with a mean penetration depth of (23.6 +/- 0.7) mm considering the deepest 5% of light. Of the detected photon packages scalp and bone absorbed (96.4 +/- 9: 7)% and V(gray) absorbed (3.1 +/- 1.8)% of the energy. The mean V(gray) volume (1.1 +/- 0.4)cm(3) was negatively correlated (r = - .76) with the SCD and frontal sinus volume (r = - .57) and was reduced by 41.5% in subjects with relatively large compared to small frontal sinus. Head circumference was significantly positively correlated with the mean SCD (r = .46) and the traversed frontal sinus volume (r = .43). Sulcal morphology had no significant impact on V(gray). Our findings suggest to consider individual SCD and frontal sinus volume as anatomical factors impacting fNIRS sensitivity. Head circumference may represent a practical measure to partly control for these sources of error variance. KW - oocytes KW - zebrafish KW - genetic causes of cancer KW - testes KW - apoptosis KW - gonads KW - sperm KW - embryos Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-142285 VL - 7 IS - 3 ER - TY - JOUR A1 - Schartl, Manfred A1 - Walter, Ronald B. A1 - Shen, Yingjia A1 - Garcia, Tzintzuni A1 - Catchen, Julian A1 - Amores, Angel A1 - Braasch, Ingo A1 - Chalopin, Domitille A1 - Volff, Jean-Nicolas A1 - Lesch, Klaus-Peter A1 - Bisazza, Angelo A1 - Minx, Pat A1 - Hillier, LaDeana A1 - Wilson, Richard K. A1 - Fürstenberg, Susan A1 - Boore, Jeffrey A1 - Searle, Steve A1 - Postlethwait, John H. A1 - Warren, Wesley C. T1 - The genome of the platyfish, Xiphophorus maculatus, provides insights into evolutionary adaptation and several complex traits JF - Nature Genetics N2 - Several attributes intuitively considered to be typical mammalian features, such as complex behavior, live birth and malignant disease such as cancer, also appeared several times independently in lower vertebrates. The genetic mechanisms underlying the evolution of these elaborate traits are poorly understood. The platyfish, X. maculatus, offers a unique model to better understand the molecular biology of such traits. We report here the sequencing of the platyfish genome. Integrating genome assembly with extensive genetic maps identified an unexpected evolutionary stability of chromosomes in fish, in contrast to in mammals. Genes associated with viviparity show signatures of positive selection, identifying new putative functional domains and rare cases of parallel evolution. We also find that genes implicated in cognition show an unexpectedly high rate of duplicate gene retention after the teleost genome duplication event, suggesting a hypothesis for the evolution of the behavioral complexity in fish, which exceeds that found in amphibians and reptiles. KW - genomics KW - genomic analysis KW - evolutionary biology Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-132152 VL - 45 IS - 5 ER -