TY - JOUR A1 - Mayer, Alexander E. A1 - Löffler, Mona C. A1 - Loza Valdés, Angel E. A1 - Schmitz, Werner A1 - El-Merahbi, Rabih A1 - Trujillo-Viera, Jonathan A1 - Erk, Manuela A1 - Zhang, Thianzhou A1 - Braun, Ursula A1 - Heikenwalder, Mathias A1 - Leitges, Michael A1 - Schulze, Almut A1 - Sumara, Grzegorz T1 - The kinase PKD3 provides negative feedback on cholesterol and triglyceride synthesis by suppressing insulin signaling JF - Science Signaling N2 - Hepatic activation of protein kinase C (PKC) isoforms by diacylglycerol (DAG) promotes insulin resistance and contributes to the development of type 2 diabetes (T2D). The closely related protein kinase D (PKD) isoforms act as effectors for DAG and PKC. Here, we showed that PKD3 was the predominant PKD isoform expressed in hepatocytes and was activated by lipid overload. PKD3 suppressed the activity of downstream insulin effectors including the kinase AKT and mechanistic target of rapamycin complex 1 and 2 (mTORC1 and mTORC2). Hepatic deletion of PKD3 in mice improved insulin-induced glucose tolerance. However, increased insulin signaling in the absence of PKD3 promoted lipogenesis mediated by SREBP (sterol regulatory element-binding protein) and consequently increased triglyceride and cholesterol content in the livers of PKD3-deficient mice fed a high-fat diet. Conversely, hepatic-specific overexpression of a constitutively active PKD3 mutant suppressed insulin-induced signaling and caused insulin resistance. Our results indicate that PKD3 provides feedback on hepatic lipid production and suppresses insulin signaling. Therefore, manipulation of PKD3 activity could be used to decrease hepatic lipid content or improve hepatic insulin sensitivity. KW - Protein kinase D3 (PKD3) KW - cholesterol KW - diacylglycerol (DAG) KW - liver KW - metabolism Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-250025 ET - accepted manuscript ER - TY - JOUR A1 - Trujillo‐Viera, Jonathan A1 - El‐Merahbi, Rabih A1 - Schmidt, Vanessa A1 - Karwen, Till A1 - Loza‐Valdes, Angel A1 - Strohmeyer, Akim A1 - Reuter, Saskia A1 - Noh, Minhee A1 - Wit, Magdalena A1 - Hawro, Izabela A1 - Mocek, Sabine A1 - Fey, Christina A1 - Mayer, Alexander E. A1 - Löffler, Mona C. A1 - Wilhelmi, Ilka A1 - Metzger, Marco A1 - Ishikawa, Eri A1 - Yamasaki, Sho A1 - Rau, Monika A1 - Geier, Andreas A1 - Hankir, Mohammed A1 - Seyfried, Florian A1 - Klingenspor, Martin A1 - Sumara, Grzegorz T1 - Protein Kinase D2 drives chylomicron‐mediated lipid transport in the intestine and promotes obesity JF - EMBO Molecular Medicine N2 - Lipids are the most energy‐dense components of the diet, and their overconsumption promotes obesity and diabetes. Dietary fat content has been linked to the lipid processing activity by the intestine and its overall capacity to absorb triglycerides (TG). However, the signaling cascades driving intestinal lipid absorption in response to elevated dietary fat are largely unknown. Here, we describe an unexpected role of the protein kinase D2 (PKD2) in lipid homeostasis. We demonstrate that PKD2 activity promotes chylomicron‐mediated TG transfer in enterocytes. PKD2 increases chylomicron size to enhance the TG secretion on the basolateral side of the mouse and human enterocytes, which is associated with decreased abundance of APOA4. PKD2 activation in intestine also correlates positively with circulating TG in obese human patients. Importantly, deletion, inactivation, or inhibition of PKD2 ameliorates high‐fat diet‐induced obesity and diabetes and improves gut microbiota profile in mice. Taken together, our findings suggest that PKD2 represents a key signaling node promoting dietary fat absorption and may serve as an attractive target for the treatment of obesity. KW - chylomicron KW - fat absorption KW - intestine KW - obesity KW - protein kinase D2/PKD2/PRKD2 Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-239018 VL - 13 IS - 5 ER -