TY - JOUR A1 - Chopra, Martin A1 - Biehl, Marlene A1 - Steinfatt, Tim A1 - Brandl, Andreas A1 - Kums, Juliane A1 - Amich, Jorge A1 - Vaeth, Martin A1 - Kuen, Janina A1 - Holtappels, Rafaela A1 - Podlech, Jürgen A1 - Mottok, Anja A1 - Kraus, Sabrina A1 - Jordán-Garotte, Ana-Laura A1 - Bäuerlein, Carina A. A1 - Brede, Christian A1 - Ribechini, Eliana A1 - Fick, Andrea A1 - Seher, Axel A1 - Polz, Johannes A1 - Ottmueller, Katja J. A1 - Baker, Jeannette A1 - Nishikii, Hidekazu A1 - Ritz, Miriam A1 - Mattenheimer, Katharina A1 - Schwinn, Stefanie A1 - Winter, Thorsten A1 - Schäfer, Viktoria A1 - Krappmann, Sven A1 - Einsele, Hermann A1 - Müller, Thomas D. A1 - Reddehase, Matthias J. A1 - Lutz, Manfred B. A1 - Männel, Daniela N. A1 - Berberich-Siebelt, Friederike A1 - Wajant, Harald A1 - Beilhack, Andreas T1 - Exogenous TNFR2 activation protects from acute GvHD via host T reg cell expansion JF - Journal of Experimental Medicine N2 - Donor CD4\(^+\)Foxp3\(^+\) regulatory T cells (T reg cells) suppress graft-versus-host disease (GvHD) after allogeneic hematopoietic stem cell transplantation (HCT allo-HCT]). Current clinical study protocols rely on the ex vivo expansion of donor T reg cells and their infusion in high numbers. In this study, we present a novel strategy for inhibiting GvHD that is based on the in vivo expansion of recipient T reg cells before allo-HCT, exploiting the crucial role of tumor necrosis factor receptor 2 (TNFR2) in T reg cell biology. Expanding radiation-resistant host T reg cells in recipient mice using a mouse TNFR2-selective agonist before allo-HCT significantly prolonged survival and reduced GvHD severity in a TNFR2-and T reg cell-dependent manner. The beneficial effects of transplanted T cells against leukemia cells and infectious pathogens remained unaffected. A corresponding human TNFR2-specific agonist expanded human T reg cells in vitro. These observations indicate the potential of our strategy to protect allo-HCT patients from acute GvHD by expanding T reg cells via selective TNFR2 activation in vivo. KW - Tumor-necrosis-factor KW - Regulatory-cells KW - Bone marrow transplantantation KW - Graft-versus-leukemia KW - Rheumatoid arthritis KW - Autoimmune diseases KW - Factor receptor KW - Alpha therapy KW - Expression KW - Suppression Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-187640 VL - 213 IS - 9 ER - TY - JOUR A1 - Dufner, Vera A1 - Kessler, Almuth Friederike A1 - Just, Larissa A1 - Hau, Peter A1 - Bumes, Elisabeth A1 - Pels, Hendrik Johannes A1 - Grauer, Oliver Martin A1 - Wiese, Bettina A1 - Löhr, Mario A1 - Jordan, Karin A1 - Strik, Herwig T1 - The emesis trial: depressive glioma patients are more affected by chemotherapy-induced nausea and vomiting JF - Frontiers in Neurology N2 - Purpose Glioma patients face a limited life expectancy and at the same time, they suffer from afflicting symptoms and undesired effects of tumor treatment. Apart from bone marrow suppression, standard chemotherapy with temozolomide causes nausea, emesis and loss of appetite. In this pilot study, we investigated how chemotherapy-induced nausea and vomiting (CINV) affects the patients' levels of depression and their quality of life. Methods In this prospective observational multicentre study (n = 87), nausea, emesis and loss of appetite were evaluated with an expanded MASCC questionnaire, covering 10 days during the first and the second cycle of chemotherapy. Quality of life was assessed with the EORTC QLQ-C30 and BN 20 questionnaire and levels of depression with the PHQ-9 inventory before and after the first and second cycle of chemotherapy. Results CINV affected a minor part of patients. If present, it reached its maximum at day 3 and decreased to baseline level not before day 8. Levels of depression increased significantly after the first cycle of chemotherapy, but decreased during the further course of treatment. Patients with higher levels of depression were more severely affected by CINV and showed a lower quality of life through all time-points. Conclusion We conclude that symptoms of depression should be perceived in advance and treated in order to avoid more severe side effects of tumor treatment. Additionally, in affected patients, delayed nausea was most prominent, pointing toward an activation of the NK1 receptor. We conclude that long acting antiemetics are necessary totreat temozolomide-induced nausea. KW - glioblastoma KW - chemotherapy KW - depression KW - nausea and emesis KW - quality of life Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-262859 SN - 1664-2295 VL - 13 ER - TY - JOUR A1 - Kusch, Valentin A1 - Bornschein, Grit A1 - Loreth, Desiree A1 - Bank, Julia A1 - Jordan, Johannes A1 - Baur, David A1 - Watanabe, Masahiko A1 - Kulik, Akos A1 - Heckmann, Manfred A1 - Eilers, Jens A1 - Schmidt, Hartmut T1 - Munc13-3 Is Required for the Developmental Localization of Ca2+ Channels to Active Zones and the Nanopositioning of Cav2.1 Near Release Sensors JF - Cell Reports N2 - Spatial relationships between Cav channels and release sensors at active zones (AZs) are a major determinant of synaptic fidelity. They are regulated developmentally, but the underlying molecular mechanisms are largely unclear. Here, we show that Munc13-3 regulates the density of Cav2.1 and Cav2.2 channels, alters the localization of Cav2.1, and is required for the development of tight, nanodomain coupling at parallel-fiber AZs. We combined EGTA application and Ca2+-channel pharmacology in electrophysiological and two-photon Ca2+ imaging experiments with quantitative freeze-fracture immunoelectron microscopy and mathematical modeling. We found that a normally occurring developmental shift from release being dominated by Ca2+ influx through Cav2.1 and Cav2.2 channels with domain overlap and loose coupling (microdomains) to a nanodomain Cav2.1 to sensor coupling is impaired in Munc13-3-deficient synapses. Thus, at AZs lacking Munc13-3, release remained triggered by Cav2.1 and Cav2.2 microdomains, suggesting a critical role of Munc13-3 in the formation of release sites with calcium channel nanodomains. KW - coupling KW - nanodomain KW - synapse KW - active zone KW - development KW - Ca2+ channels KW - Munc13-3 KW - cerebellar cortex KW - transmitter release Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-233468 VL - 22 ER -