TY - JOUR A1 - Van den Hove, Daniel A1 - Jakob, Sissi Brigitte A1 - Schraut, Karla-Gerlinde A1 - Kenis, Gunter A1 - Schmitt, Angelika Gertrud A1 - Kneitz, Susanne A1 - Scholz, Claus-Jürgen A1 - Wiescholleck, Valentina A1 - Ortega, Gabriela A1 - Prickaerts, Jos A1 - Steinbusch, Harry A1 - Lesch, Klaus-Peter T1 - Differential Effects of Prenatal Stress in 5-Htt Deficient Mice: Towards Molecular Mechanisms of Gene x Environment Interactions N2 - Prenatal stress (PS) has been shown to influence the development of the fetal brain and to increase the risk for the development of psychiatric disorders in later life. Furthermore, the variation of human serotonin transporter (5-HTT, SLC6A4) gene was suggested to exert a modulating effect on the association between early life stress and the risk for depression. In the present study, we used a 5-Htt6PS paradigm to investigate whether the effects of PS are dependent on the 5-Htt genotype. For this purpose, the effects of PS on cognition, anxiety- and depression-related behavior were examined using a maternal restraint stress paradigm of PS in C57BL6 wild-type (WT) and heterozygous 5-Htt deficient (5-Htt +/2) mice. Additionally, in female offspring, a genome-wide hippocampal gene expression profiling was performed using the Affymetrix GeneChipH Mouse Genome 430 2.0 Array. 5-Htt +/2 offspring showed enhanced memory performance and signs of reduced anxiety as compared to WT offspring. In contrast, exposure of 5-Htt +/2 mice to PS was associated with increased depressive-like behavior, an effect that tended to be more pronounced in female offspring. Further, 5-Htt genotype, PS and their interaction differentially affected the expression of numerous genes and related pathways within the female hippocampus. Specifically, MAPK and neurotrophin signaling were regulated by both the 5-Htt +/2 genotype and PS exposure, whereas cytokine and Wnt signaling were affected in a 5-Htt genotype6PS manner, indicating a gene6environment interaction at the molecular level. In conclusion, our data suggest that although the 5-Htt +/2 genotype shows clear adaptive capacity, 5-Htt +/2 mice –particularly females– at the same time appear to be more vulnerable to developmental stress exposure when compared to WT offspring. Moreover, hippocampal gene expression profiles suggest that distinct molecular mechanisms mediate the behavioral effects of the 5-Htt genotype, PS exposure, and their interaction. KW - Medizin Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-75795 ER - TY - JOUR A1 - Kittel-Schneider, Sarah A1 - Kenis, Gunter A1 - Schek, Julia A1 - van den Hove, Daniel A1 - Prickaerts, Jos A1 - Lesch, Klaus-Peter A1 - Steinbusch, Harry A1 - Reif, Andreas T1 - Expression of monoamine transporters, nitric oxide synthase 3, and neurotrophin genes in antidepressant-stimulated astrocytes JF - Frontiers in Psychiatry N2 - Background: There is increasing evidence that glial cells play a role in the pathomechanisms of mood disorders and the mode of action of antidepressant drugs. Methods: To examine whether there is a direct effect on the expression of different genes encoding proteins that have been implicated in the pathophysiology of affective disorders, primary astrocyte cell cultures from rats were treated with two different antidepressant drugs, imipramine and escitalopram, and the RNA expression of brain-derived neurotrophic factor (Bdnf), serotonin transporter (5Htt), dopamine transporter (Dat), and endothelial nitric oxide synthase (Nos3) was examined. Results: Stimulation of astroglial cell culture with imipramine, a tricyclic antidepressant, led to a significant increase of the Bdnf RNA level whereas treatment with escitalopram did not. In contrast, 5Htt was not differentially expressed after antidepressant treatment. Finally, neither Dat nor Nos3 RNA expression was detected in cultured astrocytes. Conclusion: These data provide further evidence for a role of astroglial cells in the molecular mechanisms of action of antidepressants. KW - monoamine transporters KW - BDNF KW - geneexpression KW - astrocytes KW - glia KW - depression KW - antidepressant KW - mechanismofaction KW - nitricoxidesynthase Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-123627 VL - 3 ER - TY - JOUR A1 - Van den Hove, Daniel A1 - Jakob, Sissi Brigitte A1 - Schraut, Karla-Gerlinde A1 - Kenis, Gunter A1 - Schmitt, Angelika Gertrud A1 - Kneitz, Susanne A1 - Scholz, Claus-Jürgen A1 - Wiescholleck, Valentina A1 - Ortega, Gabriela A1 - Prickaerts, Jos A1 - Steinbusch, Harry A1 - Lesch, Klaus-Peter T1 - Differential Effects of Prenatal Stress in 5-Htt Deficient Mice: Towards Molecular Mechanisms of Gene x Environment Interactions JF - PLoS ONE N2 - Prenatal stress (PS) has been shown to influence the development of the fetal brain and to increase the risk for the development of psychiatric disorders in later life. Furthermore, the variation of human serotonin transporter (5-HTT, SLC6A4) gene was suggested to exert a modulating effect on the association between early life stress and the risk for depression. In the present study, we used a 5-HttxPS paradigm to investigate whether the effects of PS are dependent on the 5-Htt genotype. For this purpose, the effects of PS on cognition, anxiety-and depression-related behavior were examined using a maternal restraint stress paradigm of PS in C57BL6 wild-type (WT) and heterozygous 5-Htt deficient (5-Htt +/-) mice. Additionally, in female offspring, a genome-wide hippocampal gene expression profiling was performed using the Affymetrix GeneChip (R) Mouse Genome 430 2.0 Array. 5-Htt +/- offspring showed enhanced memory performance and signs of reduced anxiety as compared to WT offspring. In contrast, exposure of 5-Htt +/- mice to PS was associated with increased depressive-like behavior, an effect that tended to be more pronounced in female offspring. Further, 5-Htt genotype, PS and their interaction differentially affected the expression of numerous genes and related pathways within the female hippocampus. Specifically, MAPK and neurotrophin signaling were regulated by both the 5-Htt +/- genotype and PS exposure, whereas cytokine and Wnt signaling were affected in a 5-Htt genotypexPS manner, indicating a genexenvironment interaction at the molecular level. In conclusion, our data suggest that although the 5-Htt +/- genotype shows clear adaptive capacity, 5-Htt +/- mice -particularly females-at the same time appear to be more vulnerable to developmental stress exposure when compared to WT offspring. Moreover, hippocampal gene expression profiles suggest that distinct molecular mechanisms mediate the behavioral effects of the 5-Htt genotype, PS exposure, and their interaction. KW - Serotonin transporter polymorphism KW - Acute tryptophan depletion KW - Anxiety-like behavior KW - Long-term depression KW - Knock-out mice KW - Major depression KW - Interferon-alpha KW - Physiological functions KW - Restraint stress KW - Bipolar disorder Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-135111 VL - 6 IS - 8 ER - TY - JOUR A1 - Tiane, Assia A1 - Schepers, Melissa A1 - Rombaut, Ben A1 - Hupperts, Raymond A1 - Prickaerts, Jos A1 - Hellings, Niels A1 - van den Hove, Daniel A1 - Vanmierlo, Tim T1 - From OPC to oligodendrocyte: an epigenetic journey JF - Cells N2 - Oligodendrocytes provide metabolic and functional support to neuronal cells, rendering them key players in the functioning of the central nervous system. Oligodendrocytes need to be newly formed from a pool of oligodendrocyte precursor cells (OPCs). The differentiation of OPCs into mature and myelinating cells is a multistep process, tightly controlled by spatiotemporal activation and repression of specific growth and transcription factors. While oligodendrocyte turnover is rather slow under physiological conditions, a disruption in this balanced differentiation process, for example in case of a differentiation block, could have devastating consequences during ageing and in pathological conditions, such as multiple sclerosis. Over the recent years, increasing evidence has shown that epigenetic mechanisms, such as DNA methylation, histone modifications, and microRNAs, are major contributors to OPC differentiation. In this review, we discuss how these epigenetic mechanisms orchestrate and influence oligodendrocyte maturation. These insights are a crucial starting point for studies that aim to identify the contribution of epigenetics in demyelinating diseases and may thus provide new therapeutic targets to induce myelin repair in the long run. KW - oligodendrocyte KW - epigenetics KW - myelination Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-193267 SN - 2073-4409 VL - 8 IS - 10 ER - TY - JOUR A1 - Argyrousi, Elentina K. A1 - de Nijs, Laurence A1 - Lagatta, Davi C. A1 - Schlütter, Anna A1 - Weidner, Magdalena T. A1 - Zöller, Johanna A1 - van Goethem, Nick P. A1 - Joca, Sâmia R. L. A1 - van den Hove, Daniel L. A. A1 - Prickaerts, Jos T1 - Effects of DNA methyltransferase inhibition on pattern separation performance in mice JF - Neurobiology of Learning and Memory N2 - Enhancement of synaptic plasticity through changes in neuronal gene expression is a prerequisite for improved cognitive performance. Moreover, several studies have shown that DNA methylation is able to affect the expression of (e.g. plasticity) genes that are important for several cognitive functions. In this study, the effect of the DNA methyltransferase (DNMT) inhibitor RG108 was assessed on object pattern separation (OPS) task in mice. In addition, its effect on the expression of target genes was monitored. Administration of RG108 before the test led to a short-lasting, dose-dependent increase in pattern separation memory that was not present anymore after 48 h. Furthermore, treatment with RG108 did not enhance long-term memory of the animals when tested after a 24 h inter-trial interval in the same task. At the transcriptomic level, acute treatment with RG108 was accompanied by increased expression of Bdnf1, while expression of Bdnf4, Bdnf9, Gria1 and Hdac2 was not altered within 1 h after treatment. Methylation analysis of 14 loci in the promoter region of Bdnf1 revealed a counterintuitive increase in the levels of DNA methylation at three CpG sites. Taken together, these results indicate that acute administration of RG108 has a short-lasting pro-cognitive effect on object pattern separation that could be explained by increased Bdnf1 expression. The observed increase in Bdnf1 methylation suggests a complex interplay between Bdnf methylation-demethylation that promotes Bdnf1 expression and associated cognitive performance. Considering that impaired pattern separation could constitute the underlying problem of a wide range of mental and cognitive disorders, pharmacological agents including DNA methylation inhibitors that improve pattern separation could be compelling targets for the treatment of these disorders. In that respect, future studies are needed in order to determine the effect of chronic administration of such agents. KW - object pattern separation KW - DNA methyltransferase inhibitors KW - BDNF KW - CpG islands KW - epigenetics KW - hippocampal plasticity Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-221226 VL - 159 ER -