TY - THES A1 - Kunz, Julian T1 - Wertigkeit der Absoluten Quantitativen Perfusionsauswertung nach Myokardinfarkt im Akutstadium und im Langzeitverlauf mittels Magnetresonanztomographie T1 - Validity of perfusion measurement using MRI in the acute stage of myocardial infarction and upon one year follow up N2 - Es wurden Perfusionsmessungen mittels MRT an Infarktpatienten im Akutstadium und im Langzeitverlauf durchgeführt und quantitativ mittels einem Sektormodell ausgewertet. Hierbei zeigte sich, dass sich die Perfusionswerte im Infarktareal und gesunden Myokard nicht signifikant unterschieden und dass sich diese auch im Jahresverlauf nicht signifikant änderten. Es ergab sich auch keine signifikante Korrelation zwischen der Größe des Infarkareales und den gemessenen Perfusionswerten. N2 - Quantitative cardiac perfusion was measured in the acute stage of myocardial infarction by means of MRI, as well as upon one year follow-up. Using a sector based model, measured perfusion values did not differ significantly between infarcted and non-infarcted tissue. Also, a significant change between the perfusion value upon one year follow-up could not be shown. Furthermore, no significant correlation between perfusion values and the size of the infarcted area could be shown. KW - Kernspintomografie KW - Funktionelle Kernspintomografie KW - Herzinfarkt KW - Cardioperfusion Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-220952 ER - TY - JOUR A1 - Linz, Christian A1 - Faber, Julian A1 - Schmid, Reiner A1 - Kunz, Felix A1 - Böhm, Hartmut A1 - Hartmann, Stefan A1 - Schweitzer, Tilmann T1 - Using a 3D asymmetry index as a novel form for capturing complex three-dimensionality in positional plagiocephaly JF - Scientific Reports N2 - Positional plagiocephaly (PP) is the most common skull deformity in infants. Different classification systems exist for graduating the degree of PP, but all of these systems are based on two-dimensional (2D) parameters. This limitation leads to several problems stemming from the fact that 2D parameters are used to classify the three-dimensional (3D) shape of the head. We therefore evaluate existing measurement parameters and validate a newly developed 3D parameter for quantifying PP. Additionally, we present a new classification of PP based on a 3D parameter. 210 patients with PP and 50 patients without PP were included in this study. Existing parameters (2D and 3D) and newly developed volume parameters based on a 3D stereophotogrammetry scan were validated using ROC curves. Additionally, thresholds for the new 3D parameter of a 3D asymmetry index were assessed. The volume parameter 3D asymmetry index quantifies PP equally as well as the gold standard of 30° diagonal difference. Moreover, a 3D asymmetry index allows for a 3D-based classification of PP. The 3D asymmetry index can be used to define the degree of PP. It is easily applicable in stereophotogrammetric datasets and allows for comparability both intra- and inter-individually as well as for scientific analysis. KW - craniofacial orthodontics KW - physical examination KW - three-dimensional imaging Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-300427 VL - 12 ER - TY - JOUR A1 - Baur, Florentin A1 - Nietzer, Sarah L. A1 - Kunz, Meik A1 - Saal, Fabian A1 - Jeromin, Julian A1 - Matschos, Stephanie A1 - Linnebacher, Michael A1 - Walles, Heike A1 - Dandekar, Thomas A1 - Dandekar, Gudrun T1 - Connecting cancer pathways to tumor engines: a stratification tool for colorectal cancer combining human in vitro tissue models with boolean in silico models JF - Cancers N2 - To improve and focus preclinical testing, we combine tumor models based on a decellularized tissue matrix with bioinformatics to stratify tumors according to stage-specific mutations that are linked to central cancer pathways. We generated tissue models with BRAF-mutant colorectal cancer (CRC) cells (HROC24 and HROC87) and compared treatment responses to two-dimensional (2D) cultures and xenografts. As the BRAF inhibitor vemurafenib is—in contrast to melanoma—not effective in CRC, we combined it with the EGFR inhibitor gefitinib. In general, our 3D models showed higher chemoresistance and in contrast to 2D a more active HGFR after gefitinib and combination-therapy. In xenograft models murine HGF could not activate the human HGFR, stressing the importance of the human microenvironment. In order to stratify patient groups for targeted treatment options in CRC, an in silico topology with different stages including mutations and changes in common signaling pathways was developed. We applied the established topology for in silico simulations to predict new therapeutic options for BRAF-mutated CRC patients in advanced stages. Our in silico tool connects genome information with a deeper understanding of tumor engines in clinically relevant signaling networks which goes beyond the consideration of single drivers to improve CRC patient stratification. KW - in silico simulation KW - 3D tissue models KW - colorectal cancer KW - BRAF mutation KW - targeted therapy KW - stratification Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-193798 SN - 2072-6694 VL - 12 IS - 1 ER - TY - JOUR A1 - Götz, Ralph A1 - Kunz, Tobias C. A1 - Fink, Julian A1 - Solger, Franziska A1 - Schlegel, Jan A1 - Seibel, Jürgen A1 - Kozjak-Pavlovic, Vera A1 - Rudel, Thomas A1 - Sauer, Markus T1 - Nanoscale imaging of bacterial infections by sphingolipid expansion microscopy JF - Nature Communications N2 - Expansion microscopy (ExM) enables super-resolution imaging of proteins and nucleic acids on conventional microscopes. However, imaging of details of the organization of lipid bilayers by light microscopy remains challenging. We introduce an unnatural short-chain azide- and amino-modified sphingolipid ceramide, which upon incorporation into membranes can be labeled by click chemistry and linked into hydrogels, followed by 4x to 10x expansion. Confocal and structured illumination microscopy (SIM) enable imaging of sphingolipids and their interactions with proteins in the plasma membrane and membrane of intracellular organelles with a spatial resolution of 10-20nm. As our functionalized sphingolipids accumulate efficiently in pathogens, we use sphingolipid ExM to investigate bacterial infections of human HeLa229 cells by Neisseria gonorrhoeae, Chlamydia trachomatis and Simkania negevensis with a resolution so far only provided by electron microscopy. In particular, sphingolipid ExM allows us to visualize the inner and outer membrane of intracellular bacteria and determine their distance to 27.6 +/- 7.7nm. Imaging of lipid bilayers using light microscopy is challenging. Here the authors label cells using a short chain click-compatible ceramide to visualize mammalian and bacterial membranes with expansion microscopy. KW - nanoscale imaging KW - bacterial infection KW - sphingolipid expansion microscopy Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-231248 VL - 11 ER - TY - JOUR A1 - Solger, Franziska A1 - Kunz, Tobias C. A1 - Fink, Julian A1 - Paprotka, Kerstin A1 - Pfister, Pauline A1 - Hagen, Franziska A1 - Schumacher, Fabian A1 - Kleuser, Burkhard A1 - Seibel, Jürgen A1 - Rudel, Thomas T1 - A Role of Sphingosine in the Intracellular Survival of Neisseria gonorrhoeae JF - Frontiers in Cellular and Infection Microbiology N2 - Obligate human pathogenic Neisseria gonorrhoeae are the second most frequent bacterial cause of sexually transmitted diseases. These bacteria invade different mucosal tissues and occasionally disseminate into the bloodstream. Invasion into epithelial cells requires the activation of host cell receptors by the formation of ceramide-rich platforms. Here, we investigated the role of sphingosine in the invasion and intracellular survival of gonococci. Sphingosine exhibited an anti-gonococcal activity in vitro. We used specific sphingosine analogs and click chemistry to visualize sphingosine in infected cells. Sphingosine localized to the membrane of intracellular gonococci. Inhibitor studies and the application of a sphingosine derivative indicated that increased sphingosine levels reduced the intracellular survival of gonococci. We demonstrate here, that sphingosine can target intracellular bacteria and may therefore exert a direct bactericidal effect inside cells. KW - sphingosine KW - sphingolipids KW - sphingosine kinases KW - invasion KW - survival KW - click chemistry Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-204111 SN - 2235-2988 VL - 10 ER - TY - JOUR A1 - Fäth, Julian A1 - Kunz, Julius A1 - Kneisel, Christof T1 - Monitoring spatiotemporal soil moisture changes in the subsurface of forest sites using electrical resistivity tomography (ERT) JF - Journal of Forestry Research N2 - The effects of drought on tree mortality at forest stands are not completely understood. For assessing their water supply, knowledge of the small-scale distribution of soil moisture as well as its temporal changes is a key issue in an era of climate change. However, traditional methods like taking soil samples or installing data loggers solely collect parameters of a single point or of a small soil volume. Electrical resistivity tomography (ERT) is a suitable method for monitoring soil moisture changes and has rarely been used in forests. This method was applied at two forest sites in Bavaria, Germany to obtain high-resolution data of temporal soil moisture variations. Geoelectrical measurements (2D and 3D) were conducted at both sites over several years (2015–2018/2020) and compared with soil moisture data (matric potential or volumetric water content) for the monitoring plots. The greatest variations in resistivity values that highly correlate with soil moisture data were found in the main rooting zone. Using the ERT data, temporal trends could be tracked in several dimensions, such as the interannual increase in the depth of influence from drought events and their duration, as well as rising resistivity values going along with decreasing soil moisture. The results reveal that resistivity changes are a good proxy for seasonal and interannual soil moisture variations. Therefore, 2D- and 3D-ERT are recommended as comparatively non-laborious methods for small-spatial scale monitoring of soil moisture changes in the main rooting zone and the underlying subsurface of forested sites. Higher spatial and temporal resolution allows a better understanding of the water supply for trees, especially in times of drought. KW - geoelectrical monitoring KW - forest ecology KW - hydrology KW - soil water content Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-324073 SN - 1007-662X VL - 33 IS - 5 ER - TY - JOUR A1 - Kunz, Felix A1 - Stellzig-Eisenhauer, Angelika A1 - Boldt, Julian T1 - Applications of artificial intelligence in orthodontics — an overview and perspective based on the current state of the art JF - Applied Sciences N2 - Artificial intelligence (AI) has already arrived in many areas of our lives and, because of the increasing availability of computing power, can now be used for complex tasks in medicine and dentistry. This is reflected by an exponential increase in scientific publications aiming to integrate AI into everyday clinical routines. Applications of AI in orthodontics are already manifold and range from the identification of anatomical/pathological structures or reference points in imaging to the support of complex decision-making in orthodontic treatment planning. The aim of this article is to give the reader an overview of the current state of the art regarding applications of AI in orthodontics and to provide a perspective for the use of such AI solutions in clinical routine. For this purpose, we present various use cases for AI in orthodontics, for which research is already available. Considering the current scientific progress, it is not unreasonable to assume that AI will become an integral part of orthodontic diagnostics and treatment planning in the near future. Although AI will equally likely not be able to replace the knowledge and experience of human experts in the not-too-distant future, it probably will be able to support practitioners, thus serving as a quality-assuring component in orthodontic patient care. KW - orthodontics KW - artificial intelligence KW - machine learning KW - deep learning KW - cephalometry KW - age determination by skeleton KW - tooth extraction KW - orthognathic surgery Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-310940 SN - 2076-3417 VL - 13 IS - 6 ER -