TY - JOUR A1 - Dotterweich, Julia A1 - Schlegelmilch, Katrin A1 - Keller, Alexander A1 - Geyer, Beate A1 - Schneider, Doris A1 - Zeck, Sabine A1 - Tower, Robert J. J. A1 - Ebert, Regina A1 - Jakob, Franz A1 - Schütze, Norbert T1 - Contact of myeloma cells induces a characteristic transcriptome signature in skeletal precursor cells-implications for myeloma bone disease JF - Bone N2 - Physical interaction of skeletal precursors with multiple myeloma cells has been shown to suppress their osteogenic potential while favoring their tumor-promoting features. Although several transcriptome analyses of myeloma patient-derived mesenchymal stem cells have displayed differences compared to their healthy counterparts, these analyses insufficiently reflect the signatures mediated by tumor cell contact, vary due to different methodologies, and lack results in lineage-committed precursors. To determine tumor cell contact-mediated changes on skeletal precursors, we performed transcriptome analyses of mesenchymal stem cells and osteogenic precursor cells cultured in contact with the myeloma cell line INA-6. Comparative analyses confirmed dysregulation of genes which code for known disease-relevant factors and additionally revealed upregulation of genes that are associated with plasma cell homing, adhesion, osteoclastogenesis, and angiogenesis. Osteoclast-derived coupling factors, a dysregulated adipogenic potential, and an imbalance in favor of anti-anabolic factors may play a role in the hampered osteoblast differentiation potential of mesenchymal stem cells. Angiopoietin-Like 4 (ANGPTL4) was selected from a list of differentially expressed genes as a myeloma cell contact-dependent target in skeletal precursor cells which warranted further functional analyses. Adhesion assays with full-length ANGPTL4-coated plates revealed a potential role of this protein in INA6 cell attachment. This study expands knowledge of the myeloma cell contact-induced signature in the stromal compartment of myelomatous bones and thus offers potential targets that may allow detection and treatment of myeloma bone disease at an early stage. KW - marrow stromal cells KW - Endothelial growth-factor KW - precedes multiple-myeloma KW - monoclonial gammopathy KW - in-vitro KW - mesenchymal stem-cells KW - undetermined significance KW - angiogenic cytokines KW - peripheral-blood KW - gene-expression KW - Multiple myeloma KW - Bone disease KW - Angiopoietin-like 4 KW - Gene expression profiling KW - Mesenchymal stem cells KW - Osteogenic precursor cells Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-186688 VL - 93 ER - TY - THES A1 - Schlegelmilch, Katrin T1 - Molecular function of WISP1/CCN4 in the musculoskeletal system with special reference to apoptosis and cell survival T1 - Funktionsüberprüfung von WISP1/CCN4 im mukuloskelettalen System mit besonderem Augenmerk auf Apoptose und das Überleben der Zellen N2 - Human adult cartilage is an aneural and avascular type of connective tissue, which consequently reflects reduced growth and repair rates. The main cell type of cartilage are chondrocytes, previously derived from human mesenchymal stem cells (hMSCs). They are responsible for the production and maintainance of the cartilaginous extracellular matrix (ECM), which consists mainly of collagen and proteoglycans. Signal transmission to or from chondrocytes, generally occurs via interaction with signalling factors connected to the cartilaginous ECM. In this context, proteins of the CCN family were identified as important matricellular and multifunctional regulators with high significance during skeletal development and fracture repair. In this thesis, main focus lies on WISP1/CCN4, which is known as a general survival factor in a variety of cell types and seems to be crucial during lineage progression of hMSCs into chondrocytes. We intend to counter the lack of knowledge about the general importance of WISP1-signalling within the musculoskeletal system and especially regarding cell death and survival by a variety of molecular and cell biology methods. First, we established a successful down-regulation of endogenous WISP1 transcripts within different cell types of the human musculoskeletal system through gene-silencing. Interestingly, WISP1 seems to be crucial to the survival of all examined cell lines and primary hMSCs, since a loss of WISP1 resulted in cell death. Bioinformatical analyses of subsequent performed microarrays (WISP1 down-regulated vs. control samples) confirmed this observation in primary hMSCs and the chondrocyte cell line Tc28a2. Distinct clusters of regulated genes, closely related to apoptosis induction, could be identified. In this context, TRAIL induced apoptosis as well as p53 mediated cell death seem to play a crucial role during the absence of WISP1 in hMSCs. By contrast, microarray analysis of WISP1 down-regulated chondrocytes indicated rather apoptosis induction via MAPK-signalling. Despite apoptosis relevant gene regulations, microarray analyses also identified clusters of differentially expressed genes of other important cellular activities, e.g. a huge cluster of interferon-inducible genes in hMSCs or gene regulations affecting cartilage homeostasis in chondrocytes. Results of this thesis emphasize the importance of regulatory mechanisms that influence cell survival of primary hMSCs and chondrocytes in the enforced absence of WISP1. Moreover, findings intensified the assumed importance for WISP1-signalling in cartilage homeostasis. Thus, this thesis generated an essential fundament for further examinations to investigate the role of WISP1-signalling in cartilage homeostasis and cell death. N2 - Humaner adulter Knorpel besitzt weder Blutgefäße noch Nerven, weswegen diese Knorpelart im Vergleich zu anderen Gewebetypen ein verringertes Wachstum und Regenerierung wiederspiegelt. Den Hauptteil der Zellen im adulten Knorpel stellen die Chondrozyten (Knorpelzellen)dar, welche sich zuvor aus humanen mesenchymalen Stammzellen (hMSCs) entwickelt haben. Sie sind verantwortlich für die Bildung und Aufrechterhaltung der extrazellulären Matrix (ECM) des Knorpelgewebes, welche hauptsächlich aus Kollagen und Proteoglykanen besteht. Signale, die durch Chondrozyten erzeugt oder weitergeleitet werden, finden in der Regel durch Interaktion mit Molekülen der im Knorpel liegenden ECM statt. Mitglieder der CCN-Familie gelten hierbei als bedeutende extrazelluläre Matrixproteine, die bei verschiedenen regulatorischen Prozessen während der Skelettentwicklung und der Frakturheilung eine Rolle spielen. In dieser Doktorarbeit liegt das Hauptaugenmerk auf dem CCN Protein WISP1/CCN4. Dieses Protein gilt bereits in verschiedenen Zellen als ein notwendiger Überlebensfaktor und scheint desWeiteren eine regulatorische Funktion während der Differenzierung von hMSCs in Chondrozyten auszuüben. Die generelle Bedeutung von WISP1 für das muskuloskelettale System ist bislang jedoch weitgehend ungeklärt und soll während dieser Doktorarbeit mittels einer Reihe von molekular- und zellbiologischer Methoden genauer untersucht werden. Hierfür wurde zu Beginn eine erfolgreiche Herunterregulierung endogen hergestellter WISP1 Transkripte mittels Genexpressionshemmung (gene-silencing) in verschiedenen muskuloskelettalen Zellen erzielt. Interessanterweise scheint WISP1 eine bedeutende Rolle für das Überleben dieser Zellen zu spielen, da ein Verlust bei allen untersuchten Zelllinien und primären hMSCs zum Zelltod führte. Um zu Grunde liegende Mechanismen genauer zu untersuchen, wurden daraufhin Microarray Analysen von hMSCs und Tc28a2 Chondrocyten durchgeführt (jeweils WISP1 herunterreguliert vs Kontrollzellen). In diesem Zusammenhang identifizierten bioinformatische Analysen differentielle Expressionen verschiedener apoptoseresponsiver Gene. So scheint eine Apoptoseinduktion über TRAIL und/oder p53 in hMSCs stattzufinden, wohingegen eine starke Regulation des MAPK-Signalweges in Chondrozyten detektiert wurde. Neben diesen Genregulationen, deckten die Analysen ebenso Gengruppen auf, die bei anderen wichtigen zellulären Abläufen eine Rolle spielen. Hier sind in WISP1 herunterregulierten hMSCs u.a. viele differenziell exprimierte Gene zu nennen, die durch Interferone induzierbar sind. In Chondrozyten dagegen scheint eine verringerte WISP1 Expression Genexpressionen zu beeinflussen, welche die Knorpelhomeostase regulieren. Die Ergebnisse, die während dieser Doktorarbeit erzielt wurden, verdeutlichen die Wichtigkeit von WISP1 für das Überleben von primären hMSCs und Chondrozyten. Darüberhinaus verstärken die bioinformatischen Analysen die Annahme, das WISP1 regulatorische Funktionen für die Knorpelhomeostase ausübt. Somit bietet diese Doktorarbeit ein essentielles Fundament, um die Rolle von WISP1 bei der Aufrechterhaltung der Knorpelhomeostase und des Zelltodes weiter zu erforschen. KW - Knorpelzelle KW - Extrazelluläre Matrix KW - Zelldifferenzierung KW - Apoptosis KW - WISP1/CCN4 KW - mesenchymale Stammzellen KW - Apoptose KW - WISP1/CCN4 KW - mesenchymal stem cells KW - apoptosis Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-73430 ER - TY - JOUR A1 - Tylek, Tina A1 - Blum, Carina A1 - Hrynevich, Andrei A1 - Schlegelmilch, Katrin A1 - Schilling, Tatjana A1 - Dalton, Paul D A1 - Groll, Jürgen T1 - Precisely defined fiber scaffolds with 40 μm porosity induce elongation driven M2-like polarization of human macrophages JF - Biofabrication N2 - Macrophages are key players of the innate immune system that can roughly be divided into the pro-inflammatory M1 type and the anti-inflammatory, pro-healing M2 type. While a transient initial pro-inflammatory state is helpful, a prolonged inflammation deteriorates a proper healing and subsequent regeneration. One promising strategy to drive macrophage polarization by biomaterials is precise control over biomaterial geometry. For regenerative approaches, it is of particular interest to identify geometrical parameters that direct human macrophage polarization. For this purpose, we advanced melt electrowriting (MEW) towards the fabrication of fibrous scaffolds with box-shaped pores and precise inter-fiber spacing from 100 μm down to only 40 μm. These scaffolds facilitate primary human macrophage elongation accompanied by differentiation towards the M2 type, which was most pronounced for the smallest pore size of 40 μm. These new findings can be important in helping to design new biomaterials with an enhanced positive impact on tissue regeneration. KW - cell elongation KW - human macrophages KW - melt electrowriting (MEW) KW - macrophage polarization KW - 3D scaffolds Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-254012 VL - 12 IS - 2 ER - TY - JOUR A1 - Blum, Carina A1 - Taskin, Mehmet Berat A1 - Shan, Junwen A1 - Schilling, Tatjana A1 - Schlegelmilch, Katrin A1 - Teßmar, Jörg A1 - Groll, Jürgen T1 - Appreciating the First Line of the Human Innate Immune Defense: A Strategy to Model and Alleviate the Neutrophil Elastase-Mediated Attack toward Bioactivated Biomaterials JF - Small N2 - Biointerface engineering is a wide-spread strategy to improve the healing process and subsequent tissue integration of biomaterials. Especially the integration of specific peptides is one promising strategy to promote the regenerative capacity of implants and 3D scaffolds. In vivo, these tailored interfaces are, however, first confronted with the innate immune response. Neutrophils are cells with pronounced proteolytic potential and the first recruited immune cells at the implant site; nonetheless, they have so far been underappreciated in the design of biomaterial interfaces. Herein, an in vitro approach is introduced to model and analyze the neutrophil interaction with bioactivated materials at the example of nano-bioinspired electrospun surfaces that reveals the vulnerability of a given biointerface design to the contact with neutrophils. A sacrificial, transient hydrogel coating that demonstrates optimal protection for peptide-modified surfaces and thus alleviates the immediate cleavage by neutrophil elastase is further introduced. KW - solution electrospinning KW - human neutrophil elastase (HNE) KW - peptide immobilization KW - polymeric matrix Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-257691 VL - 17 IS - 13 ER -