TY - JOUR A1 - Weigand, Isabel A1 - Ronchi, Cristina L. A1 - Vanselow, Jens T. A1 - Bathon, Kerstin A1 - Lenz, Kerstin A1 - Herterich, Sabine A1 - Schlosser, Andreas A1 - Kroiss, Matthias A1 - Fassnacht, Martin A1 - Calebiro, Davide A1 - Sbiera, Silviu T1 - PKA Cα subunit mutation triggers caspase-dependent RIIβ subunit degradation via Ser\(^{114}\) phosphorylation JF - Science Advances N2 - Mutations in the PRKACA gene are the most frequent cause of cortisol-producing adrenocortical adenomas leading to Cushing’s syndrome. PRKACA encodes for the catalytic subunit α of protein kinase A (PKA). We already showed that PRKACA mutations lead to impairment of regulatory (R) subunit binding. Furthermore, PRKACA mutations are associated with reduced RIIβ protein levels; however, the mechanisms leading to reduced RIIβ levels are presently unknown. Here, we investigate the effects of the most frequent PRKACA mutation, L206R, on regulatory subunit stability. We find that Ser\(^{114}\) phosphorylation of RIIβ is required for its degradation, mediated by caspase 16. Last, we show that the resulting reduction in RIIβ protein levels leads to increased cortisol secretion in adrenocortical cells. These findings reveal the molecular mechanisms and pathophysiological relevance of the R subunit degradation caused by PRKACA mutations, adding another dimension to the deregulation of PKA signaling caused by PRKACA mutations in adrenal Cushing’s syndrome. KW - mutation triggers KW - phosphorylation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-270445 VL - 7 IS - 8 ER -