TY - JOUR A1 - Weidner, Magdalena T. A1 - Lardenoije, Roy A1 - Eijssen, Lars A1 - Mogavero, Floriana A1 - De Groodt, Lilian P. M. T. A1 - Popp, Sandy A1 - Palme, Rupert A1 - Förstner, Konrad U. A1 - Strekalova, Tatyana A1 - Steinbusch, Harry W. M. A1 - Schmitt-Böhrer, Angelika G. A1 - Glennon, Jeffrey C. A1 - Waider, Jonas A1 - van den Hove, Daniel L. A. A1 - Lesch, Klaus-Peter T1 - Identification of cholecystokinin by genome-wide profiling as potential mediator of serotonin-dependent behavioral effects of maternal separation in the amygdala JF - Frontiers in Neuroscience N2 - Converging evidence suggests a role of serotonin (5-hydroxytryptamine, 5-HT) and tryptophan hydroxylase 2 (TPH2), the rate-limiting enzyme of 5-HT synthesis in the brain, in modulating long-term, neurobiological effects of early-life adversity. Here, we aimed at further elucidating the molecular mechanisms underlying this interaction, and its consequences for socio-emotional behaviors, with a focus on anxiety and social interaction. In this study, adult, male Tph2 null mutant (Tph2\(^{-/-}\)) and heterozygous (Tph2\(^{+/-}\)) mice, and their wildtype littermates (Tph2\(^{+/+}\)) were exposed to neonatal, maternal separation (MS) and screened for behavioral changes, followed by genome-wide RNA expression and DNA methylation profiling. In Tph2\(^{-/-}\) mice, brain 5-HT deficiency profoundly affected socio-emotional behaviors, i.e., decreased avoidance of the aversive open arms in the elevated plus-maze (EPM) as well as decreased prosocial and increased rule breaking behavior in the resident-intruder test when compared to their wildtype littermates. Tph2\(^{+/-}\) mice showed an ambiguous profile with context-dependent, behavioral responses. In the EPM they showed similar avoidance of the open arm but decreased prosocial and increased rule breaking behavior in the resident-intruder test when compared to their wildtype littermates. Notably, MS effects on behavior were subtle and depended on the Tph2 genotype, in particular increasing the observed avoidance of EPM open arms in wildtype and Tph2\(^{+/-}\) mice when compared to their Tph2\(^{-/-}\) littermates. On the genomic level, the interaction of Tph2 genotype with MS differentially affected the expression of numerous genes, of which a subset showed an overlap with DNA methylation profiles at corresponding loci. Remarkably, changes in methylation nearby and expression of the gene encoding cholecystokinin, which were inversely correlated to each other, were associated with variations in anxiety-related phenotypes. In conclusion, next to various behavioral alterations, we identified gene expression and DNA methylation profiles to be associated with TPH2 inactivation and its interaction with MS, suggesting a gene-by-environment interaction-dependent, modulatory function of brain 5-HT availability. KW - serotonin KW - maternal separation KW - mouse KW - emotional behavior KW - DNA methylation KW - RNA expression Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-201340 VL - 13 ER - TY - JOUR A1 - Cline, Brandon H. A1 - Costa-Nunes, Joao P. A1 - Cespuglio, Raymond A1 - Markova, Natalyia A1 - Santos, Ana I. A1 - Bukhman, Yury V. A1 - Kubatiev, Aslan A1 - Steinbusch, Harry W. M. A1 - Lesch, Klaus-Peter A1 - Strekalova, Tatyana T1 - Dicholine succinate, the neuronal insulin sensitizer, normalizes behavior, REM sleep, hippocampal pGSK3 beta and mRNAs of NMDA receptor subunits in mouse models of depression JF - Frontiers in Behavioral Neuroscience N2 - Central insulin receptor-mediated signaling is attracting the growing attention of researchers because of rapidly accumulating evidence implicating it in the mechanisms of plasticity, stress response, and neuropsychiatric disorders including depression. Dicholine succinate (DS), a mitochondrial complex II substrate, was shown to enhance insulin-receptor mediated signaling in neurons and is regarded as a sensitizer of the neuronal insulin receptor. Compounds enhancing neuronal insulin receptor-mediated transmission exert an antidepressant-like effect in several pre-clinical paradigms of depression; similarly, such properties for DS were found with a stress-induced anhedonia model. Here, we additionally studied the effects of DS on several variables which were ameliorated by other insulin receptor sensitizers in mice. Pre-treatment with DS of chronically stressed C57BL6 mice rescued normal contextual fear conditioning, hippocampal gene expression of NMDA receptor subunit NR2A, the NR2A/NR2B ratio and increased REM sleep rebound after acute predation. In 18-month-old C57BL6 mice, a model of elderly depression, DS restored normal sucrose preference and activated the expression of neural plasticity factors in the hippocampus as shown by Illumina microarray. Finally, young naive DS-treated C57BL6 mice had reduced depressive- and anxiety-like behaviors and, similarly to imipramine-treated mice, preserved hippocampal levels of the phosphorylated (inactive) form of GSK3 beta that was lowered by forced swimming in pharmacologically naive animals. Thus, DS can ameliorate behavioral and molecular outcomes under a variety of stress- and depression-related conditions. This further highlights neuronal insulin signaling as a new factor of pathogenesis and a potential pharmacotherapy of affective pathologies. KW - phosphorylated glycogen synthase kinase-3beta (pGSK-3beta) KW - hippocampal plasticity KW - sleep EEG KW - aging KW - NMDA receptor subunits NR2A and NR2B KW - dicholine succinate KW - insulin receptor KW - chronic stress Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-143992 VL - 9 IS - 37 ER -