TY - JOUR A1 - Conzelmann, Annette A1 - Reif, Andreas A1 - Jacob, Christian A1 - Weyers, Peter A1 - Lesch, Klaus-Peter A1 - Lutz, Beat A1 - Pauli, Paul T1 - A polymorphism in the gene of the endocannabinoid-degrading enzyme FAAH (FAAH C385A) is associated with emotional-motivational reactivity JF - Psychopharmacology N2 - RATIONALE: The endocannabinoid (eCB) system is implicated in several psychiatric disorders. Investigating emotional-motivational dysfunctions as underlying mechanisms, a study in humans revealed that in the C385A polymorphism of the fatty acid amide hydrolase (FAAH), the degrading enzyme of the eCB anandamide (AEA), A carriers, who are characterized by increased signaling of AEA as compared to C/C carriers, exhibited reduced brain reactivity towards unpleasant faces and enhanced reactivity towards reward. However, the association of eCB system with emotional-motivational reactivity is complex and bidirectional due to upcoming compensatory processes. OBJECTIVES: Therefore, we further investigated the relationship of the FAAH polymorphism and emotional-motivational reactivity in humans. METHODS: We assessed the affect-modulated startle, and ratings of valence and arousal in response to higher arousing pleasant, neutral, and unpleasant pictures in 67 FAAH C385A C/C carriers and 45 A carriers. RESULTS: Contrarily to the previous functional MRI study, A carriers compared to C/C carriers exhibited an increased startle potentiation and therefore emotional responsiveness towards unpleasant picture stimuli and reduced startle inhibition indicating reduced emotional reactivity in response to pleasant pictures, while both groups did not differ in ratings of arousal and valence. CONCLUSIONS: Our findings emphasize the bidirectionality and thorough examination of the eCB system's impact on emotional reactivity as a central endophenotype underlying various psychiatric disorders. KW - startle reflex KW - endocannabinoid KW - FAAH KW - genetics KW - emotion Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-126845 VL - 224 IS - 4 ER - TY - JOUR A1 - Conzelmann, Annette A1 - Reif, Andreas A1 - Jacob, Christian A1 - Weyers, Peter A1 - Lesch, Klaus-Peter A1 - Lutz, Beat A1 - Pauli, Paul T1 - A polymorphism in the gene of the endocannabinoid-degrading enzyme FAAH (FAAH C385A) is associated with emotional–motivational reactivity JF - Psychopharmacology N2 - Rationale The endocannabinoid (eCB) system is implicated in several psychiatric disorders. Investigating emotional–motivational dysfunctions as underlying mechanisms, a study in humans revealed that in the C385A polymorphism of the fatty acid amide hydrolase (FAAH), the degrading enzyme of the eCB anandamide (AEA), A carriers, who are characterized by increased signaling of AEA as compared to C/C carriers, exhibited reduced brain reactivity towards unpleasant faces and enhanced reactivity towards reward. However, the association of eCB system with emotional–motivational reactivity is complex and bidirectional due to upcoming compensatory processes. Objectives Therefore, we further investigated the relationship of the FAAH polymorphism and emotional–motivational reactivity in humans. Methods We assessed the affect-modulated startle, and ratings of valence and arousal in response to higher arousing pleasant, neutral, and unpleasant pictures in 67 FAAH C385A C/C carriers and 45 A carriers. Results Contrarily to the previous functional MRI study, A carriers compared to C/C carriers exhibited an increased startle potentiation and therefore emotional responsiveness towards unpleasant picture stimuli and reduced startle inhibition indicating reduced emotional reactivity in response to pleasant pictures, while both groups did not differ in ratings of arousal and valence. Conclusions Our findings emphasize the bidirectionality and thorough examination of the eCB system’s impact on emotional reactivity as a central endophenotype underlying various psychiatric disorders. KW - startle reflex KW - FAAH KW - genetics KW - endocannabinoid KW - emotion Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-129936 VL - 224 IS - 4 ER - TY - JOUR A1 - Kittel-Schneider, Sarah A1 - Kenis, Gunter A1 - Schek, Julia A1 - van den Hove, Daniel A1 - Prickaerts, Jos A1 - Lesch, Klaus-Peter A1 - Steinbusch, Harry A1 - Reif, Andreas T1 - Expression of monoamine transporters, nitric oxide synthase 3, and neurotrophin genes in antidepressant-stimulated astrocytes JF - Frontiers in Psychiatry N2 - Background: There is increasing evidence that glial cells play a role in the pathomechanisms of mood disorders and the mode of action of antidepressant drugs. Methods: To examine whether there is a direct effect on the expression of different genes encoding proteins that have been implicated in the pathophysiology of affective disorders, primary astrocyte cell cultures from rats were treated with two different antidepressant drugs, imipramine and escitalopram, and the RNA expression of brain-derived neurotrophic factor (Bdnf), serotonin transporter (5Htt), dopamine transporter (Dat), and endothelial nitric oxide synthase (Nos3) was examined. Results: Stimulation of astroglial cell culture with imipramine, a tricyclic antidepressant, led to a significant increase of the Bdnf RNA level whereas treatment with escitalopram did not. In contrast, 5Htt was not differentially expressed after antidepressant treatment. Finally, neither Dat nor Nos3 RNA expression was detected in cultured astrocytes. Conclusion: These data provide further evidence for a role of astroglial cells in the molecular mechanisms of action of antidepressants. KW - monoamine transporters KW - BDNF KW - geneexpression KW - astrocytes KW - glia KW - depression KW - antidepressant KW - mechanismofaction KW - nitricoxidesynthase Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-123627 VL - 3 ER - TY - JOUR A1 - Gutknecht, Lise A1 - Araragi, Naozumi A1 - Merker, Sören A1 - Waider, Jonas A1 - Sommerlandt, Frank M. J. A1 - Mlinar, Boris A1 - Baccini, Gilda A1 - Mayer, Ute A1 - Proft, Florian A1 - Hamon, Michel A1 - Schmitt, Angelika G. A1 - Corradetti, Renato A1 - Lanfumey, Laurence A1 - Lesch, Klaus-Peter T1 - Impacts of Brain Serotonin Deficiency following Tph2 Inactivation on Development and Raphe Neuron Serotonergic Specification JF - PLoS One N2 - Brain serotonin (5-HT) is implicated in a wide range of functions from basic physiological mechanisms to complex behaviors, including neuropsychiatric conditions, as well as in developmental processes. Increasing evidence links 5-HT signaling alterations during development to emotional dysregulation and psychopathology in adult age. To further analyze the importance of brain 5-HT in somatic and brain development and function, and more specifically differentiation and specification of the serotonergic system itself, we generated a mouse model with brain-specific 5-HT deficiency resulting from a genetically driven constitutive inactivation of neuronal tryptophan hydroxylase-2 (Tph2). Tph2 inactivation (Tph2-/-) resulted in brain 5-HT deficiency leading to growth retardation and persistent leanness, whereas a sex- and age-dependent increase in body weight was observed in Tph2+/- mice. The conserved expression pattern of the 5-HT neuron-specific markers (except Tph2 and 5-HT) demonstrates that brain 5-HT synthesis is not a prerequisite for the proliferation, differentiation and survival of raphe neurons subjected to the developmental program of serotonergic specification. Furthermore, although these neurons are unable to synthesize 5-HT from the precursor tryptophan, they still display electrophysiological properties characteristic of 5-HT neurons. Moreover, 5-HT deficiency induces an up-regulation of 5-HT\(_{1A}\) and 5-HT\(_{1B}\) receptors across brain regions as well as a reduction of norepinephrine concentrations accompanied by a reduced number of noradrenergic neurons. Together, our results characterize developmental, neurochemical, neurobiological and electrophysiological consequences of brain-specific 5-HT deficiency, reveal a dual dose-dependent role of 5-HT in body weight regulation and show that differentiation of serotonergic neuron phenotype is independent from endogenous 5-HT synthesis. KW - lacking KW - knock-out mice KW - energy expenditure KW - locomotor activity KW - 5-HT transporter KW - anxiety like KW - receptors KW - behavior KW - tryptophan KW - nucleus Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-133728 VL - 7 IS - 8 ER -